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2. Estimating DD effects in data

3. Wrap-up
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Roadmap
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Goals
1. Describe threats to validity in difference-in-differences (DD)

identification strategy and multiple approaches to address
these threats

from responding to Discussion Questions
2. Using a cleaned dataset, estimate multiple DD specifications in

R and interpret these results
from this lecture and accompanying script
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file:///C:/Users/daviddl/Documents/EDLD%20650/EDLD%20650/slides/code/EDLD_650_2_DD_script.R


Programming in EDLD 650

What you won't get 🙁

A heavy dose of data management and visualization strategies
The most efficient code with extensive use of functions

What you will get 😄

A review of the programming steps you should take as part of the actual
research process
Some model code for data management and visualization
Programming strategies and packages that can be used to estimate the
causal inference techniques we will study
A community of skilled programmers who will expand our collective
knowledge base!
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Estimating a classic, two-Estimating a classic, two-
period difference-in-period difference-in-
differences (DD) modeldifferences (DD) model
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Replicating Dynarski (2003)
Recall Dynarski's primary model (Eq. 2):

Let's try to fit this in our data!

yi = α + β(FATHERDECi × BEFOREi) + δFATHERDECi + θBEFOREi + υi
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Reading in the data
I'm using the haven package to import a data file that is in the Stata .dta format.
Lotsa options for importing file formats other than .csv ( foreign and rio are
two such ones)!

dynarski <- haven::read_dta(here("data/ch8_dynarski.dta"))

head(dynarski)

#> # A tibble: 6 x 8
#>      id  hhid   wt88  coll hgc23 yearsr fatherdec               offer
#>   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl+lbl>               <dbl>
#> 1     9     9 691916     1    13     81 0 [Father not deceased]     1
#> 2    14    13 784204     1    16     81 0 [Father not deceased]     1
#> 3    15    15 811032     1    16     82 0 [Father not deceased]     0
#> 4    21    20 644853     1    16     79 0 [Father not deceased]     1
#> 5    22    22 728189     1    16     80 0 [Father not deceased]     1
#> 6    24    23 776590     0    12     79 0 [Father not deceased]     1
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Viewing the data
Show 7  entries Search:

Showing 1 to 7 of 3,986 entries

Previous 1 2 3 4 5 … 570 Next

1 9 1 13 81 0 1

2 14 1 16 81 0 1

3 15 1 16 82 0 0

4 21 1 16 79 0 1

5 22 1 16 80 0 1

6 24 0 12 79 0 1

7 26 1 14 80 0 1

id▴▾ coll▴▾ hgc23▴▾ yearsr▴▾ fatherdec▴▾ offer▴▾
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Understanding the data (1)
d <- select(dynarski, coll, hgc23, fatherdec, offer)

summary(d)

#>       coll            hgc23         fatherdec           offer      
#>  Min.   :0.0000   Min.   :10.00   Min.   :0.00000   Min.   :0.000  
#>  1st Qu.:0.0000   1st Qu.:12.00   1st Qu.:0.00000   1st Qu.:0.000  
#>  Median :0.0000   Median :12.00   Median :0.00000   Median :1.000  
#>  Mean   :0.4579   Mean   :13.14   Mean   :0.04792   Mean   :0.723  
#>  3rd Qu.:1.0000   3rd Qu.:14.00   3rd Qu.:0.00000   3rd Qu.:1.000  
#>  Max.   :1.0000   Max.   :19.00   Max.   :1.00000   Max.   :1.000

sum(is.na(coll))

#> [1] 0
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Understanding the data (2)
college <- table(dynarski$fac_fatherdec, dynarski$fac_coll)
college

#>                      
#>                       No College College
#>   Father not deceased       2059    1736
#>   Father deceased            102      89
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Plot outcome data
hg <- ggplot(dynarski, aes(hgc23)) + geom_histogram(binwidth=1) 
  hg + scale_x_continuous(name="Highest-grade completed at 23", 
                          breaks=c(10, 12, 14, 16, 18, 20)) +
      theme_pander(base_size=18)
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Summary statistics table
Table 1. Descriptive Statistics

Statistic N Mean St. Dev.

Attend college at 23 3,986 0.46 0.50

Years schooling at 23 3,986 13.14 1.63

Father deceased 3,986 0.05 0.21

Offer 3,986 0.72 0.45

Notes: This table presents unweighted means and standard deviations from
the NLSY poverty and random samples used in the Dynarski (2003) paper.
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Graphical DD

What is treatment effect?

What is the core identifying assumption assumption underlying the DD
framework? How do we know whether we've satisfied it?
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Graphical DD

What would you think if you "knew" this was the pattern?
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Estimate classic two-period DD

Dynarski's original model:

Murnane and Willet have renamed the variable to make clear that a value of 1
means individuals are eligible for aid, so we'll do the same:

yi = α + β(FATHERDECi × BEFOREi) + δFATHERDECi + θBEFOREi + υi

yi = α + β(FATHERDECi × OFFERi) + δFATHERDECi + θOFFERi + υi
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Estimate classic two-period DD

lm(coll ~ fatherdec*offer, data=dynarski)

#> 
#> Call:
#> lm(formula = coll ~ fatherdec * offer, data = dynarski)
#> 
#> Coefficients:
#>     (Intercept)        fatherdec            offer  fatherdec:offer  
#>         0.42571         -0.07386          0.04387          0.11523

This doesn't quiet match, let's add the weights in...

yi = α + β(FATHERDECi × OFFERi) + δFATHERDECi + θOFFERi + υi
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Estimate classic two-period DD

lm(coll ~ fatherdec*offer, data=dynarski, 
            weights=dynarski$wt88)

#> 
#> Call:
#> lm(formula = coll ~ fatherdec * offer, data = dynarski, weights = dynarski
#> 
#> Coefficients:
#>     (Intercept)        fatherdec            offer  fatherdec:offer  
#>         0.47569         -0.12348          0.02601          0.18223

Pretty underwhelming output?

yi = α + β(FATHERDECi × OFFERi) + δFATHERDECi + θOFFERi + υi

18 / 44



Under the hood
est_dynarski <- lm(coll ~ fatherdec*offer, 
                   data=dynarski, weights=dynarski$wt88)
est_dynarski %>% names()

#>  [1] "coefficients"  "residuals"     "fitted.values" "effects"      
#>  [5] "weights"       "rank"          "assign"        "qr"           
#>  [9] "df.residual"   "xlevels"       "call"          "terms"        
#> [13] "model"

est_dynarski %>% tidy()

#> # A tibble: 4 x 5
#>   term            estimate std.error statistic   p.value
#>   <chr>              <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)       0.476     0.0150     31.8  7.12e-198
#> 2 fatherdec        -0.123     0.0752     -1.64 1.01e-  1
#> 3 offer             0.0260    0.0178      1.46 1.43e-  1
#> 4 fatherdec:offer   0.182     0.0893      2.04 4.14e-  2
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Further under the hood
summary(est_dynarski)

...
#>    Min     1Q Median     3Q    Max 
#> -490.9 -230.3 -138.6  247.7  554.0 
#> 
#> Coefficients:
#>                 Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)      0.47569    0.01496  31.793   <2e-16 ***
#> fatherdec       -0.12348    0.07520  -1.642   0.1007    
#> offer            0.02601    0.01777   1.463   0.1435    
#> fatherdec:offer  0.18223    0.08931   2.041   0.0414 *  
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 285.7 on 3982 degrees of freedom
#> Multiple R-squared:  0.001961,    Adjusted R-squared:  0.001209 
#> F-statistic: 2.607 on 3 and 3982 DF,  p-value: 0.04998
...
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Making a no-fuss table
stargazer(est_dynarski, type='html', single.row = T)

Dependent variable:

coll

fatherdec -0.123 (0.075)

offer 0.026 (0.018)

fatherdec:offer 0.182** (0.089)

Constant 0.476*** (0.015)

Observations 3,986

R2 0.002

Adjusted R2 0.001

Residual Std. Error 285.711 (df = 3982)

F Statistic 2 607** (df = 3; 3982)
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Central DD asssumptions
In order to fully trust that the estimates produced by a DD analysis are unbiased
by endogeneity, we need to make (and defend) the following two assumptions:

1. Not-treated (or not-yet-treated) units are valid counterfactuals
Parallel trends?
Selection into treatment? (non-exogeneity)

2. There are no simultaneous shocks or unobserved secular trends
Other observed and unobserved events or patterns?

We'll look at how to address some of these in the next section of the lecture, and
you'll read more about how to do so in the readings and DARE for next week!
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DD in panel dataDD in panel data
A. The two-way fixed effect (TWFE) estimator for staggered implementationA. The two-way fixed effect (TWFE) estimator for staggered implementation

B. Appropriate statistical inferenceB. Appropriate statistical inference

C. Assessing the parallel trends assumption (PTA)C. Assessing the parallel trends assumption (PTA)

D. The modern event-study approachD. The modern event-study approach
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End of desegregation
In 1991, 480 school districts were under court desegregation order
In following two decades, nearly half (215) were released and returned to
neighborhood assignment patterns
Timing of release was arguably exogenous and quasi-random
This provides strong support to the claim that the districts which were not (or not
yet) released from court orders were on parallel trends in their outcomes with

districts that were released and, thus, serve as valid counterfactuals1

[1] Liebowitz (2018)
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End of desegregation data
Show 9  entries Search:

Showing 1 to 9 of 9 entries Previous 1 Next

1 3904375 2010 39 1 0.0929224863648415 1991

2 0102160 1990 01 0 0.133906632661819 1991

3 4828500 2000 48 1 0.120370373129845 1991

4 4815270 1990 48 0 0.0985714271664619 1992

5 4702940 2010 47 1 0.0839421972632408 1992

6 4702940 1990 47 0 0.150237992405891 1992

7 2200540 2000 22 0 0.144326865673065 2003

8 0101410 2000 01 0 0.150395780801773 2003

9 1300001 1990 13 0 0.0979623794555664 2003

leaid ▴▾ year▴▾ STATE▴▾ unitary▴▾ sd_dropout_prop_b▴▾ yrdiss▴▾
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Estimate DD in panel data (1)

Take a minute to write down what this model does in words. Use the terms mean
effect, time series, fixed effects and causal parameter of interest.

The model takes advantage of time series (or panel or repeated measure)
data in which the Black dropout rate in each district is observed at three
points in time. The model regresses the Black dropout rate in a fixed effect
model in which observations are clustered in two dimensions: within district

 and also within time . Note:  represents a vector of dummy
indicators that take the value of one if observation j is equal to district j and
zero otherwise.  represents a vector of dummy indicators that take the
value of one if observation j is in time t (1990, 2000 or 2010).  estimates
the average treatment effect of being observed after being declared unitary
and is the causal parameter of interest reflecting the effect of being released
from a desegregation order  on the black dropout rate.

In this case, the estimates rely on repeated cross-sectional panel data. We could also
implement the same framework in longitudinal panel data.

DROPOUT_BLACKjt = β1UNITARYjt + Γj + Πt + ϵj

(Γj) (Πt) Γj

Πt

β1

UNITARYjt

26 / 44



Estimate DD in panel data (2)
We are going to shift to using the fixest package; an incredibly versatile and
robust tool for regression analysis in R from Laurent Berge.

ols_unitary1 <- feols(sd_dropout_prop_b ~ unitary | leaid + year, 
                data=desegregation, 
                vcov = "iid", weights=desegregation$sd_t_1619_b)
summary(ols_unitary1)

#> OLS estimation, Dep. Var.: sd_dropout_prop_b
#> Observations: 1,403 
#> Weights: desegregation$sd_t_1619_b 
#> Fixed-effects: leaid: 476,  year: 3
#> Standard-errors: IID 
#>         Estimate Std. Error t value   Pr(>|t|)    
#> unitary 0.018185   0.003121 5.82642 7.8155e-09 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 1.17345     Adj. R2: 0.547167
#>                 Within R2: 0.035437

Can you interpret this output? (ignore un-highlighted line for now)
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Addressing serial correlation

The worry: within-unit correlation of outcomes (e.g., within-state, across state-
years) results in correlated (and therefore too small) standard errors. As a result
out statistical inference will be incorrect.

The solution: cluster-robust standard errors1. Clustering standard errors by the
kth regressor inflates iid OLS standard errors by:

where  is the within-cluster correlation of regressor ,  is the within-
cluster error correlation and  is the average cluster size.  is asymptotically
correct as number of clusters increase. Current consensus: this estimate of  is
accurate with ~45 clusters. Fewer than 40, and this approach can dramatically
under-estimate SEs (consider bootstrapping).

Best practice: cluster at the unit of treatment (or consider two-way clustering).2

τk ≃ 1 + ρxk
ρμ(N̄g − 1)

ρxk
xigk ρμ

N̄g τk

τk

[1] Read all about cluster-robust standard errors in Cameron & Miller's (2015) accessible
practitioner's guide to standard errors.
[2] Bertrand, Mullainathan & Duflo (2004) and Abadie et al. (2017).
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Clustered standard errors (1)
ols_unitary2 <- feols(sd_dropout_prop_b ~ unitary | leaid + year, 
                 data=desegregation, 
                 weights=desegregation$sd_t_1619_b)

summary(ols_unitary2)

#> OLS estimation, Dep. Var.: sd_dropout_prop_b
#> Observations: 1,403 
#> Weights: desegregation$sd_t_1619_b 
#> Fixed-effects: leaid: 476,  year: 3
#> Standard-errors: Clustered (leaid) 
#>         Estimate Std. Error t value   Pr(>|t|)    
#> unitary 0.018185   0.004851 3.74879 0.00019958 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 1.17345     Adj. R2: 0.547167
#>                 Within R2: 0.035437

Default behavior in fixest is to cluster standard errors on the first fixed effect.
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Clustered standard errors (2)
ols_unitary3 <- feols(sd_dropout_prop_b ~ unitary | leaid + year, 
                 data=desegregation, 
                 vcov = ~ leaid^year,
                 weights=desegregation$sd_t_1619_b)

summary(ols_unitary3)

#> OLS estimation, Dep. Var.: sd_dropout_prop_b
#> Observations: 1,403 
#> Weights: desegregation$sd_t_1619_b 
#> Fixed-effects: leaid: 476,  year: 3
#> Standard-errors: Clustered (leaid^year) 
#>         Estimate Std. Error t value   Pr(>|t|)    
#> unitary 0.018185   0.004816 3.77557 0.00016631 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 1.17345     Adj. R2: 0.547167
#>                 Within R2: 0.035437

We are going to cluster our standard errors at the level of assignment to treatment: the
district-year. 30 / 44



Addressing serial correlation
A taxonomy of models estimating the end of school desegregation on the black dropout

rate, by std. error clustering approach

Unclustered Clustered (Unit) Clustered (Unit*Period)

unitary 0.018*** 0.018*** 0.018***

(0.003) (0.005) (0.005)

Num.Obs. 1403 1403 1403

R2 0.702 0.702 0.702

Std.Errors IID by: leaid by: leaid^year

FE: leaid X X X

FE: year X X X

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Notes: The table displays coefficients from Equation X with standard errors in
parentheses.

Doesn't make too much of a difference here... Note: Using modelsummary package, but
fixest comes with the powerful etable function. 31 / 44



Addressing parallel trends

A parametric approach

What is this  and how do we code it?

desegregation <- desegregation %>%
  mutate(rel_yr = case_when(
   !is.na(yrdiss) ~ (year - yrdiss),
   is.na(yrdiss) ~ -1 ## <-- this is funky, let's talk about it
  ))
summary(desegregation$rel_yr)

#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>  -19.00   -1.00   -1.00   -1.51   -1.00   19.00

DROPOUT_BLACKjt =β1UNITARYjt + β2(UNITARY × REL_YEAR)jt+

β3REL_YEARjt + Γj + Πt + ϵj

REL_YEARjt
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Peek at REL_YEAR
Show 9  entries Search:

Showing 1 to 9 of 9 entries Previous 1 Next

1 3904375 2010 39 1 0.0929224863648415 1991 19

2 0102160 1990 01 0 0.133906632661819 1991 -1

3 4828500 2000 48 1 0.120370373129845 1991 9

4 4815270 1990 48 0 0.0985714271664619 1992 -2

5 4702940 2010 47 1 0.0839421972632408 1992 18

6 4702940 1990 47 0 0.150237992405891 1992 -2

7 2200540 2000 22 0 0.144326865673065 2003 -3

8 0101410 2000 01 0 0.150395780801773 2003 -3

9 1300001 1990 13 0 0.0979623794555664 2003 -13

leaid ▴▾ year▴▾ STATE▴▾ unitary▴▾ sd_dropout_prop_b▴▾ yrdiss▴▾ rel_yr▴▾
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Map coefficients to graph

Remember: given the structure of our model, these parameters are estimated
relative to untreated and not-yet-treated districts.

DROPOUT_BLACKjt =β1UNITARYjt + β2(UNITARY × REL_YEAR)jt+

β3REL_YEARjt + Γj + Πt + ϵj
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Parallel trends?
ols_unitary_run <- feols(sd_dropout_prop_b ~ unitary*rel_yr | 
      leaid + year, data=desegregation, 
      vcov = ~leaid^year, weights=desegregation$sd_t_1619_b)
summary(ols_unitary_run)

#> OLS estimation, Dep. Var.: sd_dropout_prop_b
#> Observations: 1,403 
#> Weights: desegregation$sd_t_1619_b 
#> Fixed-effects: leaid: 476,  year: 3
#> Standard-errors: Clustered (leaid^year) 
#>                 Estimate Std. Error  t value Pr(>|t|)    
#> unitary         0.014584   0.005860  2.48893 0.012928 *  
#> rel_yr          0.001027   0.000579  1.77312 0.076426 .  
#> unitary:rel_yr -0.001367   0.000689 -1.98458 0.047386 *  
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 1.16896     Adj. R2: 0.54965 
#>                 Within R2: 0.042803

How would this graph look different than the one on previous slide? 35 / 44



A complete table!
Table 2. Effects of end of school desegregation on black dropout rate

1  2  3

Unitary status 0.018*** 0.018*** 0.015*

(0.005) (0.005) (0.006)

Pre-trend 0.001+

(0.001)

Unitary x Relative-Year -0.001*

(0.001)

Covariates? X X

Num.Obs. 1403 1403 1403

R2 0.702 0.702 0.704

Notes: +p<0.1, *p<0.05, **p<0.01, ***p<0.001. Table displays coefficients and
district-by-year clustered standard errors in parentheses. All models include
fixed effects for year and district. Models 2 and 3 adjust for proportion of 16-19
year-olds residing in district in 1990 who were Black, interacted with year.
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A flexible approach
What if, instead of assigning a particular functional form to our treatment effects
over time (either mean, linear or higher-order polynomial), we specified an
entirely flexible model?

Could also write as:

Think for a moment what this model does?

The model adjusts its estimates of the mean rate of Black dropout in
district j by the mean rate of Black dropout in year t across all
districts. Then, it estimates what effect does being t years pre- or
post-unitary have. The comparison in each of these  s is to being
never or not yet UNITARY.

DROPOUT_BLACKjt =β1pre−n
jt + β2pre8 + β3pre7jt+. . .

+ βmpost0jt+. . . +βnpostn
jt + Γj + Πt + ϵj

DROPOUT_BLACKjt =
n

∑
t=−10

1(t = t∗
j )βt + Γj + Πt + ϵj

β
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Event study
This would permit a fully flexible specification, permitting us to both evaluate
violations of the PTA and assess potential dynamic effects of the treatment:

...
#> Observations: 1,403 
#> Weights: desegregation$sd_t_1619_b 
#> Fixed-effects: year: 3,  leaid: 476
#> Standard-errors: Clustered (leaid^year) 
#>                      Estimate Std. Error   t value Pr(>|t|)    
#> cat_yr::-10+        -0.004020   0.009034 -0.444977 0.656405    
#> cat_yr::-7to-9      -0.003755   0.011329 -0.331417 0.740379    
#> cat_yr::-6to-4       0.009199   0.010449  0.880378 0.378806    
#> cat_yr::-3to-2       0.005798   0.009318  0.622229 0.533892    
#> cat_yr::Unitaryto+2  0.020860   0.010611  1.965823 0.049516 *  
#> cat_yr::3to5         0.022258   0.010005  2.224797 0.026254 *  
#> cat_yr::7to9         0.019450   0.008586  2.265370 0.023642 *  
#> cat_yr::10+          0.018580   0.010454  1.777409 0.075718 .  
#> ---
...

What has happened to our standard errors? (think about bias v. variance tradeoff) 38 / 44



Event study visualized

The end of desegregation efforts had a causal effect on the Black
dropout rate, resulting in a discontinuous and persistent increase of
between 1 and 2 percentage points (caveats, caveats).
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C-ITS
An aside on the related Comparative-Interrupted Time Series
approach:
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C-ITS considered

Strengths

Takes advantage of full range of data
Compared to mean-effect-only DD, allows differentiation of discontinuous
jump vs. post-trend
Permits modeling of fully flexible functional form (can include quadratic,
cubic, quartic relationships, interactions and more!)
Data-responsive approach

Weaknesses

Encourages over-fitting
Functional-form dependent
Risks generating unstable models

Note that a fully-saturated C-ITS model (i.e., a model that estimates a
coefficient on an indicator for each time period) is identical to an event study. 41 / 44



Wrap-upWrap-up
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Goals
1. Describe threats to validity in difference-in-differences (DD) identification

strategy and multiple approaches to address these threats.

2. Using a cleaned dataset, estimate multiple DD specifications in R and
interpret these results
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To-Dos
Reading: Liebowitz, Porter & Bragg (2022)

Critical to read the paper and answer a small set of questions as
preparation for DARE
Further: MHE: Ch. 5, 'Metrics: Ch. 5, Mixtape:

DARE #1

Let's look at assignment
Submit code and memo in response to questions
Indicate partners (or not)
I am available for support!

Research Project Proposal due 11:59pm, 1/28

Talk to me!
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