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A motivating question
Researchers (including two from the University of Oregon), Nichole Kelly, Elizabeth Cotter
and Claire Guidinger (2018), set out to understand the extent to which young men who
exhibit overeating behaviors have weight-related medical and psychological challenges.

Using real-world data (generously provided by Nichole Kelly) about the dietary habits, health, and
self-appraisals of males 18-30, we are going to attempt to answer a similar question.

After a prolonged throat clearing, we're going to explore the relationship between dietary restraint

behaviors (self-reports on the extent to which participants restricted their food intake) and over-

eating frequency (participants' self-reported frequency of over-eating episodes). 3 / 74
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Goals for the unit
Articulate the concepts of multiple regression and "statistical adjustment"
Distinguish between the substantive implications of the terms "statistical control"
and "statistical adjustment"
Estimate the parameters of a multiple regression model
Visually display the results of multiple regresion models
State the main effects assumption and what the implication would be if it were
violated
Conduct statistical inference tests of single predictors (a -test) and the full model
(an -test) in multiple regression
Decompose the total variance into its component parts (model and residual) and
use the  statistic to describe this decomposition
Describe problems for regression associated with the phenomenon of
"multicollinearity"
Use visual schema (e.g., Venn diagrams) to assess regression models for the
potential of multicollinearity
Use statistical results (e.g., correlation matrices or heat maps) to assess regression
models for the potential of multicollinearity
Describe and implement some solutions to multi-collinearity

t

F
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Univariate statistics
We're interested in characterizing the relationship between over-eating frequency
(OE_frequency) and dietary restraint behaviors (EDEQ_restraint), so we can start out by
examining each of these variables independently.

summary(do$OE_frequency)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   1.000   2.281   4.000  29.000

sd(do$OE_frequency)

## [1] 3.733668

summary(do$EDEQ_restraint)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.200   1.200   1.383   2.200   6.000

etc.
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Univariate displays
Now some univariate visualizations...
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Bivariate relationship
Now some bivariate statistics...

cor(do$OE_frequency, do$EDEQ_restraint)

## [1] 0.3079139
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Bivariate relationship

Based on what you see here and on the previous slides, what can we say about the direction,
linearity, existence of outliers, strength and magnitude of this relationship? What evidence from
these visuals and statistics supports/threatens our regression assumptions?
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Regression results
## 
## Call:
## lm(formula = OE_frequency ~ EDEQ_restraint, data = do)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2137 -1.7849 -1.1036  0.8964 27.8964 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.10358    0.15448   7.144 1.66e-12 ***
## EDEQ_restraint  0.85168    0.07997  10.651  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.554 on 1083 degrees of freedom
## Multiple R-squared:  0.09481,    Adjusted R-squared:  0.09398 
## F-statistic: 113.4 on 1 and 1083 DF,  p-value: < 2.2e-16

Can you interpret this relationship substantively? What previous value have we seen

related to a number displayed above?
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Regression diagnostics
We've looked a little already at the linearity of our relationship and the homoscedasticity
of our residuals. What else can we look at?

How can we test for homoscedasticity, linearity and normality in our residuals?

do$predict <- predict(fit)
do$resid <- resid(fit)
do$stu_resid <- rstudent(fit)
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Regression diagnostics: normality

The bulk of our residuals are roughly normally distributed, but we clearly have a long
right tail. Perhaps we would want to test the sensitivity of our models for the exclusion of
these outlying values? What is driving this long right tail?
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Residuals v. fitted

We are clearly under-predicting for some set of individuals. There is also some evidence
of heteroscedasticity.

There are some orange flags in our estimates here. In fact, we are conducting a somewhat different analysis than Kelly et al.

(2018). They conducted a logistic regression for the presence of any medical or psychological challenges. We will learn how to

do that analysis in EDUC 645. However, we are going to proceed with our analysis while noting that some of our assumptions

may not be fully met.
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Regression results
## 
## Call:
## lm(formula = OE_frequency ~ EDEQ_restraint, data = do)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2137 -1.7849 -1.1036  0.8964 27.8964 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.10358    0.15448   7.144 1.66e-12 ***
## EDEQ_restraint  0.85168    0.07997  10.651  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.554 on 1083 degrees of freedom
## Multiple R-squared:  0.09481,    Adjusted R-squared:  0.09398 
## F-statistic: 113.4 on 1 and 1083 DF,  p-value: < 2.2e-16

Let's assume that we trust the way we've characterized this bivariate relationship. But perhaps

there are other features among the participants that also influence their eating behaviors?

13 / 74



Another variable
Perhaps we should consider another variable that might also be related to overeating
frequency (OE_FREQUENCY). What about one we already know a good deal about...BMI?
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Another variable
Perhaps we should consider another variable that might also be related to overeating
frequency (OE_FREQUENCY). What about one we already know a good deal about...BMI?

summary(lm(OE_frequency ~ BMI, data=do))

...
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.690 -2.194 -1.693  1.085 26.711 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.00178    0.47270   2.119  0.03430 * 
## BMI          0.05046    0.01810   2.787  0.00541 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.722 on 1083 degrees of freedom
## Multiple R-squared:  0.007122,    Adjusted R-squared:  0.006205 
## F-statistic: 7.769 on 1 and 1083 DF,  p-value: 0.005409
...
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Multiple regression

aka, statistical adjustment
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Multiple regression
Mathematically, we simply add additional terms to our equation like this:

or more generally for  predictors...

OE_frequencyi = β0 + β1DietaryRestrainti + β2BMIi + εi

k

Yi = β0 + β1X1 + β2X2 + ⋯ + βkXk + εi
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Implement in R
We can estimate our postulated linear model in R as follows:

summary(lm(OE_frequency ~ EDEQ_restraint + BMI, data=do))

...
## lm(formula = OE_frequency ~ EDEQ_restraint + BMI, data = do)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3068 -1.7590 -1.0768  0.9079 27.8809 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.871725   0.451670   1.930   0.0539 .  
## EDEQ_restraint 0.841637   0.082079  10.254   <2e-16 ***
## BMI            0.009692   0.017741   0.546   0.5850    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.555 on 1082 degrees of freedom
## Multiple R-squared:  0.09506,    Adjusted R-squared:  0.09339 
## F-statistic: 56.83 on 2 and 1082 DF,  p-value: < 2.2e-16 18 / 74



What does MR look like?

trace 0

predict: 0

0 1

Play
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What does MR look like?

predict: 0

0 1
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Play
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A return to 2D-land

And we could do the same for any other predictor variable (e.g., wt)!
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On average, cars with worse horsepower
have worse mpg

This is true at various car weights
AND on average, heavier cars have worse
mpg

This is true across the distribution
of cars' horsepower

These lines are parallel (have a common
slope)

This is only true because we have
assumed them to be so; aka the
main effects assumption
We assume the relationship
between each predictor and the
outcome are equivalent,
independent of the levels of the
other predictors

Interpreting multiple regression
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On average, cars with worse horsepower
have worse mpg

This is true at various car weights
AND on average, heavier cars have worse
mpg

This is true across the distribution
of cars' horsepower

These lines are parallel (have a common
slope)

This is only true because we have
assumed them to be so; aka the
main effects assumption
We assume the relationship
between each predictor and the
outcome are equivalent,
independent of the levels of the
other predictors

Could be case that relationship between
horsepower and mpg is different at
different car weights

We'll relax this assumption in Unit 5

Interpreting multiple regression
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Multiple regression assumptions

We make the same assumptions as in bivariate regression, but now extended to multiple
variables:

1. At each combination of the Xs, there is a distribution of Y with a given mean
 and variance 

2. The relationship between the points can be correctly characterized by a flat plane
through the means

3. The variances  of the distributions at the combination of the Xs are
homoscedastic

4. Conditional on the combination of the Xs, the values of Y are independent of each
other

5. At each combination of the Xs, the values of Y are normally distributed

(μY |X1...Xk
) (σ2

Y |X1...Xk
)

(σ2)
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Interpreting our results
...
## lm(formula = OE_frequency ~ EDEQ_restraint + BMI, data = do)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3068 -1.7590 -1.0768  0.9079 27.8809 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.871725   0.451670   1.930   0.0539 .  
## EDEQ_restraint 0.841637   0.082079  10.254   <2e-16 ***
## BMI            0.009692   0.017741   0.546   0.5850    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.555 on 1082 degrees of freedom
## Multiple R-squared:  0.09506,    Adjusted R-squared:  0.09339 
## F-statistic: 56.83 on 2 and 1082 DF,  p-value: < 2.2e-16
...

Interpretation of the intercept: we estimate that individuals with a dietary restraint index=0 and
BMI score=0 will have an overeating score of 0.87
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Interpreting our results
...
## lm(formula = OE_frequency ~ EDEQ_restraint + BMI, data = do)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3068 -1.7590 -1.0768  0.9079 27.8809 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.871725   0.451670   1.930   0.0539 .  
## EDEQ_restraint 0.841637   0.082079  10.254   <2e-16 ***
## BMI            0.009692   0.017741   0.546   0.5850    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.555 on 1082 degrees of freedom
## Multiple R-squared:  0.09506,    Adjusted R-squared:  0.09339 
## F-statistic: 56.83 on 2 and 1082 DF,  p-value: < 2.2e-16
...

Interpretation of EDEQ_restraint: adjusting for individuals' BMI, we estimate that young men who
score one unit apart on the dietary-restraint index will have 0.84 unit different overeating scores.
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Interpreting our results
...
## lm(formula = OE_frequency ~ EDEQ_restraint + BMI, data = do)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3068 -1.7590 -1.0768  0.9079 27.8809 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.871725   0.451670   1.930   0.0539 .  
## EDEQ_restraint 0.841637   0.082079  10.254   <2e-16 ***
## BMI            0.009692   0.017741   0.546   0.5850    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.555 on 1082 degrees of freedom
## Multiple R-squared:  0.09506,    Adjusted R-squared:  0.09339 
## F-statistic: 56.83 on 2 and 1082 DF,  p-value: < 2.2e-16
...

Interpretation of BMI: adjusting for individuals' dietary restraint behavior, we estimate that young
men who have one unit different body-mass indices will have 0.01 unit different overeating scores.
In fact...
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Multiple regression
We can now use these regression estimates to construct our fitted equation:

Looking at the results from the previous slides, has including the covariate BMI clarified

the relationship between OE_frequency and EDEQ_restraint? Why or why not?

What if I have more than two predictors???

We can no longer display this graphically (after all we don't live in a 11-dimensional
world), but the same theoretical and mathematical principles apply. Our regression
estimates the coefficient for each predictor, while adjusting for all other relationships
between our other covariates and our outcome; each time collapsing the multi-
dimensional relationship to a two-dimensional one.

^OE_frequencyi = 0.872 + 0.842 ∗ DietaryRestrainti + 0.010 ∗ BMIi + εi
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Multiple regression:

Affordances and limitations
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Power of multiple regression
Multiple regression helps us as follows:

1. Allows us to simultaneously consider many contributing factors in the relationship
2. We explain more of the variation in , and
3. We make more accurate predictions of  (#2 and 3 both make our residuals

smaller)
4. Provides a separate understanding of the relationship between each predictor and

our outcome, adjusting for the effects of the other predictors (that is, holding the
other predictors constant at their means)

If we are ready to believe some very strong assumptions, multiple regression might even
be able to characterize a credibly causal relationship between two variables of interest.
However, there are some important limits to what multiple regression can do. More in a
bit!

Y

Y
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Power of multiple regression
Multiple regression can be a powerful tool to adjust for sample differences that depend on a
variable other than the one in which we are interested and focus on the key question we have.

Take this example of a theoretical relationship between height and reading ability:
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Power of multiple regression
Multiple regression can be a powerful tool to adjust for sample differences that depend on a
variable other than the one in which we are interested and focus on the key question we have.

Take this example of a theoretical relationship between height and reading ability:

Do we really believe this or are there statistical adjustments we can make to reveal the
true nature of the relationship? 32 / 74



Power of multiple regression
Multiple regression can be a powerful tool to adjust for sample differences that depend on a
variable other than the one in which we are interested and focus on the key question we have.

Take this example of a theoretical relationship between height and reading ability:

The weighted average of these slopes is the relationship between height and reading score, after
accounting for students' grade.
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Implementing in R
How to add a third variable in ggplot:

ggplot(data=reading, aes(x=height, y=read, color=grade)) + 
  geom_point() +
  geom_smooth(method='lm', se=F) +
  theme_minimal(base_size = 16)

The weighted average of these slopes is the relationship between height and reading score, after
accounting for students' grade. 34 / 74



Power of multiple regression
Formally testing this:

summary(lm(read ~ height + grade, data=reading))

## 
## Call:
## lm(formula = read ~ height + grade, data = reading)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5747 -0.9787  0.0229  0.9910  4.2605 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.266133   0.407565  -0.653 0.513918    
## height       0.006718   0.009997   0.672 0.501727    
## grade3rd     0.510637   0.131011   3.898 0.000104 ***
## grade4th     0.831877   0.136910   6.076 1.75e-09 ***
## grade5th     1.123386   0.144658   7.766 2.01e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 417 on 995 degrees of freedom
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Power of multiple regression II
Multiple regression can solve a dilemma we introduced earlier known as Simpson's Paradox.

Seems surprising, right?
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Power of multiple regression II
Multiple regression can solve a dilemma we introduced earlier known as Simpson's Paradox.
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Power of multiple regression II
Multiple regression can solve a dilemma we introduced earlier known as Simpson's Paradox.
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In pursuit of causality
In fact, if we can be confident that our general linear model includes all observable (prior
score, demographics, SES) determinants for why some people receive or have higher
values of a "treatment" such that there are no unobservable characteristics (motivation,
attitudes, preferences) (and our temporal precedence condition is also met), then our
regression estimates for the relationship between that predictor and our outcome can
be credibly interpreted as causal in nature. This is sometimes referred to as "selection
on observables."

What would have to be true of our postulated model for us to be able to interpret the

relationship between dietary restraint behaviors and over-eating patterns as causal in
our context?

Again, we have whole classes dedicated to just these topics of experimental and quasi-
experimental techniques (EDLD 650 & EDLD 679).
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The limits of multiple regression

...or why can't I say "control" like every other stats
student everywhere?
We call the most common form of experimental research a randomized controlled trial
because the investigator/researcher can "control" whether individuals do or do not
receive a given treatment. As a result of this design, we can be confident that all
observable and unobservable characteristics are equivalent across the two groups. This
is not what we are doing in multiple regression!

What are some reasons why a multiple regression with a rich set of covariates might still

not "control" for reasons why some people exhibit different patterns of dietary restraint

than others?

Synonyms you may encounter for statistical adjustment: "controlling for,"

"partialling out," or "holding constant"

We encounter a different kind of limit to the power of multiple regression in the
presence of multi-collinearity...more on that next class...
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Multiple regression in action
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Estimate in R
summary(lm(OE_frequency ~ EDEQ_restraint + BMI, data=do))

...
## lm(formula = OE_frequency ~ EDEQ_restraint + BMI, data = do)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3068 -1.7590 -1.0768  0.9079 27.8809 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.871725   0.451670   1.930   0.0539 .  
## EDEQ_restraint 0.841637   0.082079  10.254   <2e-16 ***
## BMI            0.009692   0.017741   0.546   0.5850    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.555 on 1082 degrees of freedom
## Multiple R-squared:  0.09506,    Adjusted R-squared:  0.09339 
## F-statistic: 56.83 on 2 and 1082 DF,  p-value: < 2.2e-16
...
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It's all the GLM...
Oh, by the way have you ever heard of partial correlations?

ppcor::pcor.test(x=do$OE_frequency, y=do$EDEQ_restraint, z=do$BMI)

##   estimate      p.value statistic    n gp  Method
## 1 0.297606 1.310824e-23    10.254 1085  1 pearson

partial1 <- lm(OE_frequency ~ BMI, data=do)
do$OE_partial <- resid(partial1)

partial2 <- lm(EDEQ_restraint ~ BMI, data=do)
do$EDEQ_partial <- resid(partial2)

cor(do$OE_partial, do$EDEQ_partial)

## [1] 0.297606
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Goodness of fit statistics
summary(lm(OE_frequency ~ EDEQ_restraint + BMI, data=do))

...
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3068 -1.7590 -1.0768  0.9079 27.8809 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.871725   0.451670   1.930   0.0539 .  
## EDEQ_restraint 0.841637   0.082079  10.254   <2e-16 ***
## BMI            0.009692   0.017741   0.546   0.5850    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.555 on 1082 degrees of freedom
## Multiple R-squared:  0.09506,    Adjusted R-squared:  0.09339 
## F-statistic: 56.83 on 2 and 1082 DF,  p-value: < 2.2e-16
...

This is a better fit (with more variance explained) than with BMI alone ...why? What does

it mean that this is no better fit than with EDEQ_restraint alone? 44 / 74



Variance decomposition in MR
Just as before:

The sum of the squares of the model are now calculated based on the distance each
observation has from the fitted regression plane:

The total sum of the squares is as before:

and  is just  or more generally 

SSBMI = SSModel + SSResidual

SSModel = ∑ (Ŷ − Ȳ )2

SSBMI =∑ (Y − Ȳ )2

R2 SSModel

SSBMI

SSModel

SSTotal
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Inference in multiple
regression
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Omnibus -test

Across all predictors, is any of them
related to my outcome?

Name comes from distribution
generated by this statistic (the -
distribution)

Individual -tests

Is this specific predictor related to my
outcome, controlling for all other
predictors?

Two diferent hypotheses
F

H0 = β1. . .βk = 0

HA = some βj ≠ 0

F

t

H0 = (β1|X2 ⋯Xk) = 0

HA = (β1|X2 ⋯Xk) ≠ 0
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Communicating results I
modelsummary(list(fit, fit2),
   stars=T,
   gof_omit = "Adj.|AIC|BIC|Log|RMSE|RSE",
   coef_rename = c("EDEQ_restraint" = "Dietary Restraint Index (0-6)"),
   add_rows = row, escape=F)

 (1)   (2)

(Intercept) 1.104*** 0.872+

(0.154) (0.452)

Dietary Restraint Index (0-6) 0.852*** 0.842***

(0.080) (0.082)

BMI 0.010

(0.018)

Num.Obs. 1085 1085

F-statistic 113.440 56.830

R2 0.095 0.095

+ p < 0 1 * p < 005 ** p < 001 *** p < 0001
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Communicating results II
It can be hard to interpret for a lay reader the substantive meaning of describing a
relationship, adjusting for other factors. It can be quite helpful in these instances to plot
"prototypical values," allowing your reader to safely return to the land of two-dimensions.

Unfortunately, in our worked example, there is no real variation in over-eating frequency
by BMI, so we'll use the toy example we looked at earlier.
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Communicating results II
# Fit your regression
car <- lm(mpg ~ hp + wt, data=mtcars)
# Use the margins package and define prototypical values
df2 <- margins::margins(car, at = list(wt = c(2,3,4)))

# Use prototypical values in resulting dataset to show results
proto <-  ggplot(data=df2, aes(x=hp, y=fitted, color=as.factor(wt))) + 
   geom_smooth(method='lm', se=F) +
   xlab("Horsepower") + ylab("Predicted MPG") +
   scale_color_discrete(name = "Weight",
                       breaks=c(2,3,4),
                       labels=c("2,000 lbs","3,000 lbs","4,000 lbs")) +
   theme_minimal(base_size=16)
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Communicating results II
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Prototypical plots by hand
It can help build your understanding and intuition to build these prototypical plots by hand.

...
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.941 -1.600 -0.182  1.050  5.854 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 37.22727    1.59879  23.285  < 2e-16 ***
## hp          -0.03177    0.00903  -3.519  0.00145 ** 
## wt          -3.87783    0.63273  -6.129 1.12e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.593 on 29 degrees of freedom
## Multiple R-squared:  0.8268,    Adjusted R-squared:  0.8148 
## F-statistic: 69.21 on 2 and 29 DF,  p-value: 9.109e-12
...

Fitted equation: m̂pg = 37.22727 + (−0.03177) ∗ hp + (−3.87783) ∗ wt
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In communicating these results, we need to
decide:

Which predictor to display on the x-axis
(generally the core question predictor)
Which prototypical values to use that will
be displayed
Which (if any) prototypical values to use
that won't be displayed

Communicating results III
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Choosing prototypical values
Examine the distribution of the other predictors and consider:

1. Substantively interesting values: whole numbers help
2. A range of percentiles: e.g., quartiles or 10th, 50th and 90th

percentiles
3. Sample mean  1 SD: particularly when a symmetric distribution exists
4. Sample mean: typically when you are not displaying that particular

predictor
5. Categorical predictors: more in Unit 4

±
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Putting it all together
 (1)   (2)

(Intercept) 1.104*** 0.872+

(0.151) (0.466)

Dietary Restraint Index (0-6) 0.852*** 0.842***

(0.112) (0.116)

BMI 0.010

(0.019)

Num.Obs. 1085 1085

F-statistic 113.440 56.830

R2 0.095 0.095

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Cells report coefficients and heteroscedastic-robust standard errors in parentheses.
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Putting it all together
We postulated a linear model which we estimated via Ordinary-Least
Squares regression to assess whether there is a relationship between
dietary-restraint and over-eating behaviors, on average, in the population of
young adult males. At an alpha threshold of 0.05, we found that dietary-
restraint behaviors were a significant predictor of over-eating patterns and
accounted for approximately 10 percent of the overall variance in over-
eating. We estimated that young men who are one unit apart on a dietary
restraint index will have an over-eating score 0.85 (p<0.001, 95% CI: 0.74,
1.04) points different from each other (Table 1). Adjusting for individuals'
body-mass index does not meaningfully alter the nature of our estimated
relationship. In fact, when we hold individuals' dietary restraint behaviors
constant, we fail to reject the null and conclude that there is no adjusted-
relationship between BMI and over-eating, on average in the population. For
parsimony, we adopt Model 1 as our preferred specification.
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Bivariate v. multiple regression
Bivariate regression Multiple regression

Model
specification

Interpretation of Predicted value of Y
when X=0

Predicted value of Y when all Xs = 0

Interpretation of Difference in Y per 1
unit of X

Difference in Y per 1 unit difference in ,
adjusting for 

Graphical
representation

Fitted line
Fitted plane in 3D (with two Xs)
Plot with prototypical lines in 2D

Residuals
Distance between
observation and fitted
line

Distance between observation and fitted
plane

Inference: -tests
Is there a relationship
between X and Y in
pop?

Adjusting for  is there a relationship
between  and Y in the population?
Repeat for each X

Ŷ = β̂0 + β̂1X1 Ŷ = β̂0 + β̂1X1 + β̂2X2 + ⋯ β̂kXk

β̂0

β̂1

X1

X2 ⋯Xk

t

H0 = β1 = 0 H0 = β1 = 0

X2 ⋯Xk

X1
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Bivariate v. multiple regression
Bivariate regression Multiple regression

Inference: -test same result as -
test

Does any predictor (or all of them jointly)
have a relationship with Y in the population?

% of variation in Y
explained by X

% of variation in Y explained by 

Regression
assumptions

See prior unit
Same as bivariate, but at each combination of
the Xs.
Main effects assumption

F

H0 = β1 = 0

t

H0 = β1. . .βk = 0

R2

ModelSS
TotalSS ModelSS

TotalSS

X1 ⋯Xk
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Multi-collinearity
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Limits of multiple regression
While we've noted several data puzzles multiple regression can solve, multiple regression cannot
uncover the accurate nature of a relationship if predictors are "too highly" correlated. For example,
if women and men have unequal access to jobs of different status, adjusting for job status will not

recover the relationship between gender and wages.[1]

[1] This was a problem many researchers identified in Google's efforts to document pay disparities in 2019:
(https://www.npr.org/2019/03/05/700288695/google-pay-study-finds-its-underpaying-men-for-some-jobs).
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Limits of multiple regression
On average, women have lower wages than men:

tidy(lm(wage ~ gend, data=discr))

## # A tibble: 2 x 5
##   term        estimate std.error statistic p.value
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept)   57500.      20.4     2813.       0
## 2 gendWomen     -4998.      28.9     -173.       0

On average, women are in lower status jobs than men:

tidy(lm(status ~ gend, data=discr))

## # A tibble: 2 x 5
##   term        estimate std.error statistic p.value
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept)     8.00    0.0200      400.       0
## 2 gendWomen      -5.00    0.0283     -177.       0
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Limits of multiple regression
However, once we adjust for job status, there is no wage differential, on average in the
population, between men and women:

tidy(lm(wage ~ gend + status, data=discr))

## # A tibble: 3 x 5
##   term        estimate std.error statistic p.value
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept) 49517.       18.0   2747.      0    
## 2 gendWomen      -8.32     12.6     -0.662   0.508
## 3 status        998.        2.19   457.      0

If two predictors are "too highly" correlated, we can't adjust for one to evaluate the
effects of the other. This is known as multicollinearity. It can also be described as a
problem of collider bias.
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Multicollinearity
Multicollinearity occurs when predictor variables are highly related to each other.

This can be straightforward to detect, such as when two of our predictors are strongly
related to one another:

Simple and adjusted slopes differ dramatically for two or more predictors
Estimated adjusted slopes seem substantively wrong
Standard errors increase with added predictors
Reject omnibus -test, but fail to reject individual -tests

Sometimes multicollinearity is more difficult to detect, such as when our variable of
interest (e.g., ) is not strongly correlated with any one , but the combination of the

s is a strong predictor of .

Multicollinearity biases our regression estimates and increases the standard errors of
our regression coefficients.

F t

X1 Xk

X X1
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Totally uncorrelated predictors are rare
(almost exclusively in experiments)
Can compute R2 just by summing
separate R2s

Correlated predictors are very common
Can't just sum the separate R2 because
the predictors overlap

Venn diagrams of collinearity

R2
Y |1,2

= R2
Y |1

+ R2
Y |2

R2
Y |1,2

= a+b+c

a+b+c+d
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Highly correlated predictors: jointly
explained proportion of "c" is large;
independent proportions of "a" and "b"
are quite small; adding the other
predictor will not help much
Fairly uncorrelated predictors: jointly
explained proportion of "c" is relatively
small; independent proportions of "a"
and "b" are independently or both fairly
meaningful; adding predictors will help

How much do extra predictors help?

Simple correlation: = 

Partial correlation: = 

So, the relationship between simple and partial correlations depends on the size of "a"
and "c", relative to "b" and "d." As before, it's all the GLM...

√ b+c

a+b+c+d

√ b

b+d
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Estimates of collinearity in R
datasummary_correlation(cordat,
                        fmt = 3,
notes = "Notes: cells report Pearson correlation coefficients.",
escape=F)

OE EDEQ EDS  BMI Age  Income

OE 1 . . . . .

EDEQ .308 1 . . . .

EDS .198 .358 1 . . .

BMI .084 .224 -.006 1 . .

Age .012 .030 .047 .131 1 .

Income .071 .144 .117 -.041 .139 1

Notes: cells report Pearson correlation coefficients.

We can examine these correlations for the presence of multi-collinearity in our data
using a correlation matrix. Do you see evidence of this here?
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Visual heatmap
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read height grade

read 1 . .

height .164 1 .

grade .291 .492 1

Correlation and collinearity
Perfect collinearity never happens (except in the instance of a duplicated variable).
There are degrees of multicollinearity.

More multicollinearity = more problematic model.

In practice, when we detect problems with collinearity, what we are really detecting is
strongly correlated predictors.

However, not all strongly correlated predictors are "collinear." In the example of height and grade,
once we partial out grade, there is no relationship between height and reading. However, after
partialling out height, there is still a relationship between grade and reading. This is because there
is still variation in grade at each value of height. Don't abuse the term collinear!
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Some thoughts on "collinearity"

There are different perspectives on how serious of a problem multicollinearity is and what to do
about it. Some of these perspectives are more acceptable than others (I think):

Some believe that multicollinearity is always concerning; you should determine whether any
covariates have collinearity with each other. If so, you should remove them or create factors.

I think this is clearly wrong. Covariates are intended to elucidate the relationship between
your predictor and your outcome, but they aren't to be interpreted themselves as
subsantively meaningful (sometimes they are called "nuisance parameters"). If they approach
collinearity with each other, but not with your central question predictor, this isn't an issue.
Coefficients on your covariates may be biased and your inference about them would be
wrong, but that's ok: you don't really care about them.

Others believe that a set of statistical tests and "rules of thumb" can guide whether there is a
serious problem of collinearity with your question predictor

You may encounter a statistic known as variance inflation factor (VIF), and see guidelines that
if VIF>5 or VIF>10, then you have a problem. You can estimate this via the car::vif function

This is more debatable. My recommendation is not to use strict thresholds but to instead use
sensible comparison of correlations, the standard errors with/without the potentially "over-
correlated" covariate and then really clear documentation of your choices. 70 / 74



Putting multicollinearity together

1. Statistical adjustments can help recover the "true" relationship in your data that is
obscured by confounding variables.

2. When two variables are highly correlated, it may be impossible to adjust for one
This is known as the problem of multicollinearity (though the term is not quite
right!)

3. Graphical representations (such as Venn diagrams) can help you conceptualize the
potential for multicollinearity

4. Use correlation matrices to detect for the phenomenon of highly correlated
variables

Consider visual representations to detect patterns more easily
5. Focus on correlations between your predictor variable and covariates

Correlations (and partial correlations) above 0.8 are especially concerning
Examine how standard errors and signs/magnitude of coefficients change when
including/excluding correlated predictors

6. Solutions to multicollinearity:
Change your research design, increase sample size, remove a variable, create a
composite or factor score (more to come in EDUC 645 and beyond!)
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Synthesis and wrap-up
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Goals for the unit
Articulate the concepts of multiple regression and "statistical adjustment"
Distinguish between the substantive implications of the terms "statistical control"
and "statistical adjustment"
Estimate the parameters of a multiple regression model
Visually display the results of multiple regresion models
State the main effects assumption and what the implication would be if it were
violated
Conduct statistical inference tests of single predictors (a -test) and the full model
(an -test) in multiple regression
Decompose the total variance into its component parts (model and residual) and
use the  statistic to describe this decomposition
Describe problems for regression associated with the phenomenon of
"multicollinearity"
Use visual schema (e.g., Venn diagrams) to assess regression models for the
potential of multicollinearity
Use statistical results (e.g., correlation matrices or heat maps) to assess regression
models for the potential of multicollinearity
Describe and implement some solutions to multi-collinearity

t

F

R2
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To-Dos
Reading:

Finish by Feb. 6: LSWR Chapter 15.3

Quiz 2
Open now. Finish by 1/29 at 5pm

Assignment 2:
Due Feb 14., 11:59pm
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