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Goals for the unit
Characterize a bivariate relationship along �ve dimensions (direction, linearity,
outliers, strength and magnitude)
Describe how statistical models differ from deterministic models
Mathematically represent the population model and interpret its deterministic and
stochastic components
Formulate a linear regression model to hypothesize a population relationship
Describe residuals and how they can describe the degree of our OLS model �t

Explain , both in terms of what it tells us and what it does not
Estimated a �tted regression line using Ordinary-Least Squares regression
Conduct an inference test for a regression coef�cient and our regression model

Calculate a correlation coef�cient  and describe its relationship to 
Distinguish between research designs that permit correlational associations and
those that permit causal inferences

R2

(r) R
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A motivating question
Researchers (including two from the University of Oregon), Nichole Kelly, Elizabeth Cotter
and Claire Guidinger (2018), set out to understand the extent to which young men who
exhibit overeating behaviors have weight-related medical and psychological challenges.

Using real-world data (generously provided by Nichole Kelly) about the dietary habits, health, and
self-appraisals of males 18-30, we are going to attempt to answer a similar question.

In particular, we are going to explore the relationship between dietary restraint behaviors (self-
reports on the extent to which participants consciously restricted/controlled their food intake)
and over-eating frequency (participants' self-reported frequency of over-eating episodes). 4 / 45
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A preliminary analysis
Before we get to the core question of the Kelly et al. study--how are dietary restraint
behaviors related to over-eating frequency?--we are going to explore another important
relationship in the data that may also be related to our main research question: the
relationship between dietary restraint behaviors (self-reports on the extent to which
participants consciously restricted/controlled their food intake) and body-mass index
(BMI). In particular, we are going to operationalize this by examining the relationship in
our sample of young men between our predictor variable (EDEQ_restraint) and their
body-mass index (BMI).

We are examining this relationship so that we can better understand how all
three of these variables (OE_frequency, EDEQ_restraint and BMI) are related
in Unit 3. Additionally, the properties of the variable BMI are pedadogically
helpful in demonstrating the assumptions of OLS.

However, we recognize that BMI has been shown to be relatively
uninformative about individuals' overall health and categorizes individuals
based on distributions initially derived exclusively from white Western
European (French and Scottish) study participants. We use the measure for
pedagogical purposes because the variable is one of the few continuous
measures in one of the few datasets that our UO colleagues shared with us,
while noting its problematic historical use.
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Our bivariate relationship

Our linear model:

BMIi = β0 + β1(EDEQ_restrainti) + εi
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OLS regression
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Fit a regression
Let's try �tting our regression in R.

fit <- lm(BMI ~ EDEQ_restraint, data=do)
summary(fit)

Call:
lm(formula = BMI ~ EDEQ_restraint, data = do)

Residuals:
    Min      1Q  Median      3Q     Max 
-19.047  -3.955  -0.922   2.701  33.282 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14 8 / 45



Evaluating regressions: Coef�cients

Here we can �nd our intercept and slope coef�cients for our linear regression.

...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

The predicted BMI for a young male with a dietary restraint rating of 0 is 23.92 .(β0)
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Evaluating regressions: Coef�cients

Here we can �nd our intercept and slope coef�cients for our linear regression.

...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

A one unit difference in dietary restraint is positively associated with a 1.04 difference in BMI.

Even better: We reject the null hypothesis, and conclude that on average, in the population there is

a relationship between dietary restraint and BMI. We estimate that young men who are one unit

apart on dietary restraint index will have a BMI score 1.04 points different from each other.

Why not just say "increase" or "decrease"? Be careful of causal language! More on this next class! 10 / 45



Evaluating regressions: Std errors

Standard errors represent how precisely we have estimated our regression coef�cient,
given our sample size, the quality of our model �t, and the variability in our predictor.

...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

Not critical you understand the formula, but standard errors are important pieces of information
that we'll examine in more detail momentarily:

SEβ̂1
= √ ∗

1

n − 2

Σ(yi − ŷi)2

Σ(xi − x̄)2
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Evaluating regressions: Model �t

...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

The residual standard error (RSE) is the standard deviation of the residuals. This
summarizes the variability of observed values around the model-predicted values, in the
original units of the outcome.

This means observed values vary around our model-predicted BMI with a standard
deviation of 6.089. In BMI, 6 units is quite large!

RSE = 6.089
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Degrees of freedom
Both RSE and the related measure of model �t, Root Mean Square Error (RMSE), depend
on the number of degrees of freedom  in your regression. Though it's not critical that
you learn how to calculate RSE or RMSE, it is important to understand that is is a
function of the degrees of freedom  in your regression:

Our degrees of freedom decrease each time we use another parameter (add a predictor to our
regression) to calculate the sum of squares. In a bivariate regression, our degrees of freedom (aka,
the denominator) will always be  because we are estimating two parameters  and . With
smaller samples and many covariates, we may quickly use up our degrees of freedom.

What happens to our model's precision as our degrees of freedom decrease?

Use the stored model statistics to calculate RSE by hand:

sqrt(sum(fit$residuals^2) / fit$df)

## [1] 6.088998

(df)

(df)

RSE = √
sum of squared residuals

n − (# of parameters estimated)SS

n − 2 β0 β1
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Evaluating regression: 
Here is our summary of model performance.

...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

The R-squared value is .05. This means that our model accounts for 5% of the variance
in BMI. Since our model has only one predictor, we can alternatively say Dietary Restraint
accounts for 5% of the variance in BMI.

The rest? Measurement error, random individual variation, other unobserved causes

R2
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What does  mean?
 describes what proportion of the variation in the outcome the full regression model

has explained.

Whether or not your model has a high or low  is:

Disciplinary dependent
Entirely independent from whether or not your model accurately characterizes the
relationship

 does NOT:

Imply anything about causality
Tell us anything about whether there exists a linear or non-linear relationship (more
on this soon)
Tell us anything about the magnitude (steepness/shallowness) of the slope

A model can have a low , and yet your estimated coef�cient of interest can
meaningfully predict variation in your outcome.

R2

R2

R2

R2

R2
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Regression inference
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A review of inference
So far, we've been evaluating the statistics generated by models �t on our sample, but
remember our primary interest is in making an inference from the sample to the

population.

Go back to EDUC 641 for a refresher on Null-Hypothesis Signi�cance Testing (NHST), the
Central Limit Theorem and -distributions.

...but we're going to provide a quick review now before applying these concepts to
understanding standard errors and using them to construct con�dence intervals (CI).

t
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Basic review of NHST
Start by imagining a hypothetical world in which there is no relationship between  and 
in our population.

Last term, we formulated a set of null hypotheses about relationship between
categorical data (e.g., no relationship between race of victim and death penalty
sentence) or about whether a sample mean was different from a "known" population
mean (e.g., life expectancy in Mediterranean countries is the same as in the full
population of countries).

We can use the same framework to test elements of the General Linear Model and, in
particular, regression coef�cients. In particular, here we will test the null hypothesis that

 (there is no relationship between dietary restraint behaviors and BMI).

Our alternative hypothesis is that there is a relationship:

x y

β1 = 0

H0 : β1 = 0

H1orHA : β1 ≠ 0

18 / 45



The beauty of the CLT
We can imagine drawing samples over and over again (say...5,000 times) from this
hypothetical null population. What values of  might we observe?β̂1

h/t Simon Hess (@simonhhess)
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The beauty of the CLT
Random sampling from the population will return sample means that will be
asymptotically (approaching) normal in their distribution as the number of samples
approaches in�nity (i.e., they will take on a -distribution). This is (mathematically)
what the Central Limit Theorem demonstrates.

Because of that mathematical fact, we can conduct inference in the statistics.

We know what the distribution of sample means from a null hypothesis will look like,
so we can determine the probability of observing a sample statistic as extreme as
we did

REMEMBER: this requires no assumptions about the shape of the sample variable(s);
they do NOT have to be normally distributed for the CLT to hold

...but, how do we know how likely it is to have observed such an extreme sample
statistic in the presence of a null relationship in the population?

Z
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-values
The statistic that captures the likelihood that one would observe a value of  of a given
magnitude in a particular sample, in the presence of a null population, is called the p-
value.

Prior to interacting with our data, we set an alpha threshold; a probability threshold,
below which we will consider  to be so small that it is unlikely that we would have
gotten this result if the null were true, and we will reject the null hypothesis. Above this
value, we will fail to reject the null.

In social science research, it is customary to (arbitrarily) set that threshold at 5 percent

.1 In other words, we say that if the difference between our observed data and
our expected data would have happened in fewer than 1 out of 20 randomly drawn
samples, that the difference re�ects a true difference in the population.

p
β̂1

p

(p < 0.05)

[1] Reminder that in some disciplines, the convention is to set alpha thresholds at 0.01 or 0.1, highlighting that these are subjective and arbitrary.
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What are we testing?
There are multiple inferential tests in a regression model:

Tests of the coef�cients
Test of the model (omnibus test)

...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

Here, the -value refers to the probability of obtaining a slope equal to or more extreme
than  assuming  is true. But where do we get that p-value from?

p

β H0
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William Sealy Gosset, then a Head
Experimental Brewer at Guinness
Beer, wrote a pseudonymously
published article in 1908 showing
that estimates of  divided by
their standard error form a de�ned
distribution
This distribution is now known as
Student's -distribution
Why Student's -distribtion?
Gosset's pseudonym was "Student"

Student's -distribution

The -statistic represents an estimate of how many standard errors  lies away from 0
in the -distribution.

When we posit a null hypothesis, we assume that 

t

(β̂1)

t

t

t β̂1

t

t =
β̂1 − β1

SE(β̂1)

β1 = 0
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-distributions
The degrees of freedom for our -statistic is always n-1, where n is our sample size
-distributions with fewer degrees of freedom have "fatter" tails

As the degrees of freedom get larger, the -distribution approaches a standard
normal distribution

t
t

t

t
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How large is enough?
Generally, as we get to around 50 degrees of freedom, our -distribution approaches a
standard normal distribution, and our inferences are straightforward because the -
values for our -test are the same as -values are in the standard normal distribution.

Critical values of 

0.10 0.05 0.01

10 1.81 2.23 3.17

20 1.72 2.09 2.85

30 1.70 2.04 2.75

50 1.68 2.01 2.68

100 1.66 1.98 2.63

1.64 1.96 2.58

t

p

t p

tobserved

df

→ ∞
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Regression coef�cients: 
Our output shows us the signi�cance of the intercept (typically, we are not interested in
whether the intercept differs from 0).

...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

β̂0
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Regression coef�cients: 
...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

β̂1

t = = = 7.57
β̂1 − 0

SE(β̂1)

1.0367

0.137

Pr(t < −7.57 or t > 7.57)|H0 = 0.000000000000082 or p < 0.001
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Regression coef�cients
...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

Under the null hypothesis, it is extremely unlikely to obtain a Dietary Restraint slope of
1.04 (p < .001). Therefore, we can reject the null hypothesis and conclude that there is a
positive relationship between Dietary Restraint rating and BMI, on average in the
population.
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Con�dence intervals (CIs)
It would be nice to say something more concrete about how accurately we have
estimated this relationship.

Perhaps, we can identify a range of plausible values for . We may be able to use
information about the quality of our model �t and the variability in our to construct
intervals that offer a range of plausible values for the population parameter.

Let's develop some intuition around the idea of con�dence intervals (CIs).

β̂1
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Con�dence interval intuition
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Con�dence interval intuition
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Con�dence interval intuition
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Slope  sampling distribution

We can use this same approach to construct a distribution of estimated slopes . Here,
we imagine the "true" population slope is 1.

(β̂1)

β̂1

h/t Simon Hess (@simonhhess)
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Formal con�dence intervals
The intuition to take from the preceding simulation is that the con�dence interval
corresponds to the frequency with which the underlying "true" population parameter will
fall within the range of the con�dence interval over repeated sampling from that
population.

For a given -threshold, we are positing that 90 or 95, 99 or 99.9 percent of future
con�dence intervals drawn from repeated samples will encompass the true value of the
population parameter.

Colloquially: "If we drew a sample over and over again and computed a 95% con�dence
interval for each replication, then 95% of those intervals would contain the true mean."

NOT: "there is a 95% probability that the true mean lies within the con�dence interval"

Con�dence interval for :

α

β̂1

β̂1 ± tcriticaln−2 [se(β̂1)]
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Con�dence intervals (CIs)
...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

95% CIs:

β̂1 ± tn−2[se(β̂1)]

1.037 ± 1.96(0.137)

[0.768, 1.306]
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Con�dence intervals (CIs)
Let's do the same with R

tidy(fit, conf.int=T)

## # A tibble: 2 x 7
##   term           estimate std.error statistic  p.value conf.low conf.high
##   <chr>             <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)       23.9      0.265     90.4  0          23.4       24.4 
## 2 EDEQ_restraint     1.04     0.137      7.57 8.18e-14    0.768      1.31
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-Distributions and omnibus tests

The omnibus test uses the -distribution to test the ratio of two variances (i.e.,
explained vs unexplained variance). This is a different, but similar, distribution to the -
distribution. For now, it's not critical that you know how it differs.

Null hypothesis: The model does not account for any variance in .

If we reject the null, then the model accounts for more variance than we would expect
by chance.

F

F

t

Y

37 / 45



-Distributions and omnibus tests

Just like tests with other probability distribution, we are testing the probability of
obtaining a value (or more extreme value) of  under the -Distribution.

Mean Squares (MS) are the Sums of Squares divided by their respective degrees of
freedom.

F

F F

F =
MSmodel

MSresidual
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Interpreting the omnibus test
...
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     23.9223     0.2647  90.384  < 2e-16 ***
EDEQ_restraint   1.0367     0.1370   7.566 8.18e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1083 degrees of freedom
Multiple R-squared:  0.05021,    Adjusted R-squared:  0.04933 
F-statistic: 57.25 on 1 and 1083 DF,  p-value: 8.177e-14
...

Our omnibus test is signi�cant at an -threshold of 0.05 , therefore we can
reject the null hypothesis that the full model accounts for no variability in individuals'
BMI.

α (p < 0.001)
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Summarizing regression results

modelsummary(fit, stars=T,
  gof_omit = "Adj.|AIC|BIC|Log",
  coef_rename = c("EDEQ_restraint" = "Dietary Restraint Index (0-6)"),
  escape=F) # <- necessary for html, but don't need this for Word

 (1)

(Intercept) 23.922***

(0.265)

Dietary Restraint Index (0-6) 1.037***

(0.137)

Num.Obs. 1085

R2 0.050

RMSE 6.08

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Summarizing regression results

 (1)

(Intercept) 23.922***

(0.265)

Dietary Restraint Index (0-6) 1.037***

(0.137)

Num.Obs. 1085

R2 0.050

RMSE 6.08

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

We postulated a linear model which we estimated via Ordinary-Least Squares regression to
assess whether there is a relationship between BMI and Dietary Restraint, on average, in the
population of young adult males. At an alpha threshold of 0.05, we found that Dietary Restraint
was a signi�cant predictor of BMI and accounted for approximately 5 percent of the variance in
BMI. We estimate that young men who are one unit apart on a dietary restraint index will have a
BMI score 1.04 (p<0.001, 95% CI: 0.77, 1.31) points different from each other.
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Synthesis and wrap-up
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Putting it all together...so far

Understand your data �rst
Summarize and visualize each variable independently
Start with a visual representation of the relationship between your two
variables

Your General Linear Model represents your hypothesis about the population
When you �t a regression model, you are estimating sample values of
population parameters that you will not directly observe
The goal of classical regression inference is to understand how likely the
observed data in your sample are in the presence of no relationship in the
unobserved population
State a null hypothesis
Establish an alpha threshold

Use Ordinary Least Squares regression to estimate the relationship
Interpret coef�cients, standard errors, 
Assess assumptions
Conduct an inference test
Reject (or fail to reject) the null
Substantively interpret

R2
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Class goals
Formulate a linear regression model to hypothesize a population relationship
Explain , both in terms of what it tells us and what it does not
Estimated a �tted regression line using Ordinary-Least Squares regression
Conduct an inference test for a regression coef�cient and our regression model

R2
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To-Dos
Reading:

If you have not already: LSWR Chapter 15.1 - 15.2 and 15.4 - 15.7 and Hu (2021)
By January 21 class: LSWR Chapter 5.7

Quiz:
Opens Jan. 21st

Assignment 1:
Now live
Have all information you need to complete parts 1 & 2
Due Feb. 3
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