
Non-linearity

EDUC 643: Unit 5 Part II

David D. Liebowitz



Roadmap

2 / 64



Goals of the unit
Describe in writing and verbally the assumptions we violate when we fit a non-linear
relationship with a linear model
Transform non-linear relationships into linear ones by using logarithmic scales
Estimate regression models using logarithmic scales and interpret the results
Estimate models with quadratic and higher-order polynomial terms (special kinds
of interactions)
Select between transformation options
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Non-linearity
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$ and learning
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$ and learning
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$ and learning

If assumptions hold, each $10,000 diff in total spending associated, on average, with 4.3 scale
score point difference in reading scores. But do they?
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Linear?
# Fit the model
fit <- lm(read_score ~ total_spending, data=pisa)
# Generate residual vs fitted plot
pisa$resid <- resid(fit)
pisa$fitted <- fitted(fit)
ggplot(pisa, aes(fitted, resid)) + geom_point() +
  geom_hline(yintercept = 0, color = "red", linetype="dashed")

8 / 64



9 / 64



Make it nice

At low levels of spending the relationship between total_spending and read_score has a
big magnitude. At higher levels of spending, it seems much more modest (negative?).
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Piecewise
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Piecewise
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Piecewise
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Piecewise
While it is true, as we've said before that locally all relationships are linear, we've
identified some emerging issues:

Cut points arbitrary and these choices may substantially alter nature of observed
relationship
With large data "eyeballing" linear sub-segments impossible
Increasing loss of power (larger standard errors and confidence intervals, greater influence of
outliers)
Overfitting risks increase

Analysis conforms to particularly to your specific data, but generalizes poorly to
population of inference

Solutions: transformations and polynomials
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Logarithmic transformations in X
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Log transformations
We can posit a non-linear relationship between X and Y in the population
Any non-linear relationship implies that the relationship between X and Y is relative
to a particular value of X and/or Y, not absolute (the slope is non-constant)
Transformations (i.e., spreading out in some cases and compressing in others the
values of our X and Y variables) allow us to fit non-linear relationships within the
existing machinery of the general linear model
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 1 octave = doubling of cycles-per-second
Seismic-wave amplitude Location Richter Scale

1,000,000 Christchurch, 2010 6.0

10,000,000 Port-au-Prince, 2010 7.0

100,000,000 Sichuan, 2008 8.0

1,000,000,000 Sumatra, 2004 9.0

 1 Richter = 10x  SWA

Log transformations in life

↑

↑ ↑
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Exponents Logarithms

A log 🌲 you say??
Logs are the function we can perform to "undo" raising a number to a power. If a number
is equal to a base raised to a power , then a logarithim of a given base is
the number you would have to raise to that power to get :

Each 1 unit increase in a base-10 logarithm represents a 10-fold increase in . Can have
logarithms of different base.

(x = basepower)

x

10 = 101

100 = 102

1, 000 = 103

10, 000 = 104

100, 000 = 105

log10(10) = 1

log10(100) = 2

log10(1, 000) = 3

log10(100, 000) = 4

log10(100, 000) = 5

x
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Exponents Logarithms

A log 🌳 you say??
Logs are the function we can perform to "undo" raising a number to a power. If a number
is equal to a base raised to a power , then a logarithim of a given base is
the number you would have to raise to that power to get :

Each 1 unit increase in a base-2 logarithm represents a doubling of .

Can say this as: “Log base 2 of 32 is 5” or “Log base 10 of 1,000 is 3”

(x = basepower)

x

2 = 21

4 = 22

8 = 23

16 = 24

32 = 25

log2(2) = 1

log2(4) = 2

log2(8) = 3

log2(16) = 4

log2(32) = 5

x
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Understanding logs

Some key concepts:

Taking logs spreads out the distance between small (closer to 0) values and
compresses the distance between large (further from zero) values.
Log base anything(1) is = 0
Log base anything(0) is undefined (can't raise anything to a power and get 0)
Log base anything(<0) (i.e., log of a negative number) is undefined (technically a
complex number)
Taking logs is a monotonic transformation; doesn’t change the order of any of the
underlying raw values
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$ and scores?
Let's try transforming our X variable (total_spending) on a logarithmic scale; can do this
directly in our plot:

log_flag <- flag +
              xlab("Total spending, age 6-15 (Log10 $)") +
              scale_x_log10(breaks=c(10000, 50000, 100000, 300000), 
                            label=scales::comma)
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$ and scores?
Let's try transforming our X variable (total_spending) on a logarithmic scale; can do this
directly in our plot:
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$ and scores?
Let's try transforming our X variable (total_spending) on a logarithmic scale; can do this
directly in our plot:
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Regress read on 

summary(lm(read_score ~ log10(total_spending), data=pisa))

## 
## Call:
## lm(formula = read_score ~ log10(total_spending), data = pisa)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -136.50  -20.83   11.00   22.42   59.11 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             -78.03      69.14  -1.129    0.263    
## log10(total_spending)   112.74      14.46   7.798 8.06e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 35.59 on 63 degrees of freedom
## Multiple R-squared:  0.4911,    Adjusted R-squared:  0.4831 
## F-statistic:  60.8 on 1 and 63 DF,  p-value: 8.062e-11

log10(spend)
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Conceptually

In ed/dev psych this kind of curve is typically called a “learning curve”; represents
standard rate of learning
More broadly, "increasing exponential decay" or "diminishing marginal returns"

^READj = 428 + 0.00043 × SPENDj
^READj = −78.03 + 112.74 × log10(SPENDj)
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Interpret

Some alternative ways to describe this relationship:

Average reading scores in the population of countries sitting for the 2018 PISA reading test were 112.7 points
higher for every ten-fold increase in cumulative educational spending on children aged 6-15.
As cumulative education spending on children aged 6-15 is ten times higher, reading scores in the population of
countries sitting for the 2018 PISA reading test were 112.7 points higher, on average.
We predict that two countries that spend an order of magnitude (e.g., $10,000 vs. $100,00) apart on cumulative
educational expenditures on children aged 6-15 will have PISA reading scores 112.7 points apart.
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Log transformations in Y

aka Exponential growth curve
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GDP and PPE
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GDP and PPE
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An alternative model
The relationship of GDP and PPE are relative to their respective values. The relationship
has a smaller magnitude when GDP per capita is smaller and a larger magnitude when
GDP per capita is larger. Can use a log transformation to capture the non-absolute
(non-constant) nature of the slope:

PPEj = β0 ∗ 2(β1GDPj+ε)

log2(PPEj) = log2β0 + β1GDPj + ε
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Interpreting this
Can interpret log outcomes as percent changes because:

So,  is  times larger than ! Depends on key properties of logs:

log(xy) = log(x) + log(y)
 = p*log(x)

Percent growth rate = 

Regress log(Y) on X and substitute the estimated slope into the equation for the percent growth
rate to obtain the estimated percent growth rate per unit change in X.

 is the same thing as saying the percent growth rate is 

Y1 = β02β1X1

Y2 = β02β1(X+1) = β02β1X2β1

= = 2β1
Y2

Y1

β02β1X2β1

β02β1X

Y2 2β1 Y1

log(xp)

100 ∗ (2β1 − 1)

Y2 = 2β1Y1 100 ∗ (2β1 − 1)
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Visualized Y transformation
oecd$log2ppe <- log2(oecd$ppe)

log_ppe <- ggplot(oecd, aes(x=gdp, y=log2ppe))
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Visualized Y transformation
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Regress  on gdp

summary(lm(log2(ppe) ~ gdp, oecd))

...
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.39728 -0.09378  0.01867  0.11920  0.31357 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.176e+01  1.113e-01   105.7   <2e-16 ***
## gdp         3.899e-05  2.484e-06    15.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1712 on 32 degrees of freedom
## Multiple R-squared:  0.8851,    Adjusted R-squared:  0.8815 
## F-statistic: 246.5 on 1 and 32 DF,  p-value: < 2.2e-16
...

Percent growth rate:  ; for each $1 more of GDP per person,
PPE is 0.0027% higher; or for each $1,000 more of GDP per person, PPE is 2.7% higher

log2(ppe)

100(20.000039 − 1) = 0.0027%
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Interpreting log Y results

Per capita gross domestic product (GDP) is a strong predictor of yearly per-
student expenditure from primary through tertiary education. In particular, if
we compare two countries whose GDPs differ by $1,000, we would predict
that the wealthier country would have per pupil expenditure that is 2.7
percent higher than the country with the smaller economy.

log2( ^PPEj) = 11.8 + 0.000039 ∗ GDPj
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Log-log transformations

aka proportional growth
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Which 🌳 to harvest?
Could theoretically select a log of any base to transform outcome or predictor or
both to a linear relationship
Much more sensible to restrict yourself to base_10, base_2 or the natural log;
comes from Euler's number 

Natural log: 

(e)

e = lim
n→∞

(1 + )n ≈ 2.718281828459...
1

n

log2.718...(x) = loge(x) = ln(x)

37 / 64



All the countries
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Log-log transformations
oecd2$lngdp <- log(oecd2$gdp)
oecd2$lnppe <- log(oecd2$ppe)

ln_ppe <- ggplot(oecd2, aes(x=lngdp, y=lnppe))
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Log-log transformations
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Regress  on 

summary(lm(log(ppe) ~ log(gdp), oecd2))

...
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.43570 -0.04076  0.01302  0.07489  0.26542 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.39273    0.72674   -0.54    0.592    
## log(gdp)     0.91274    0.06801   13.42 3.83e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1509 on 34 degrees of freedom
## Multiple R-squared:  0.8412,    Adjusted R-squared:  0.8365 
## F-statistic: 180.1 on 1 and 34 DF,  p-value: 3.826e-15
...

ln(ppe) ln(gdp)

^LnPPEj = −0.39 + 0.91 ∗ LnGDPj
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Postulated model: Imagine  and  are 1% (or 0.01) apart:

So  is  times larger than 

Interpreting this
Can interpret log-log relationships in percent terms.  represents the % change in Y per

1% change in X.

Regress ln(Y) on ln(X) and the slope estimate is the estimated percent difference in Y
per 1 percent difference in X

β1

Y = β0X
β1eε

ln(Y ) = ln(β0X
β1eε)

ln(Y ) = ln(β0) + ln(Xβ1) + ln(eε)

ln(Y ) = ln(β0) + β1ln(X) + ε

Y1 Y2

Y1 = β0X
β1

Y2 = β0(1.01X)β1 = β0X
β1(1.01)β1

= = (1.01)β1
Y2

Y1

β0X
β1

β0X
β1

Y2 (1.01)β1 Y1
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Interpret log-log relationship
summary(lm(log(ppe) ~ log(gdp), oecd2))

...
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.43570 -0.04076  0.01302  0.07489  0.26542 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.39273    0.72674   -0.54    0.592    
## log(gdp)     0.91274    0.06801   13.42 3.83e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1509 on 34 degrees of freedom
## Multiple R-squared:  0.8412,    Adjusted R-squared:  0.8365 
## F-statistic: 180.1 on 1 and 34 DF,  p-value: 3.826e-15
...

"1 percent change in GDP predicts 0.91 percent change in PPE"
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Interpret log-log relationship

We predict that, on average, comparing two countries with GDP per capita
separated by 1 percent the wealthier country will spend 0.91 percent more
on its pupils across primary through tertiary education.

ln( ^PPEj) = ln(β0) + β1ln(GDPj) + ε
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"Forbidden" log transformations

So far, we've been dealing with situations in which all the variables we needed to
transform were non-zero. In fact this is often not the case:

Many other instances: counts of behaviors, individual income, absences, scale scores,
etc.
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"Forbidden" log transformations

Traditional approach:

Add a small "starter" value to all raw values (+1, +0.1, +0.01, +0.001, etc.)
Take log of this "zero-inflated" variable

DO NOT DO THIS!!!

Value selected for starter and proportion of 0s in your data can results in wildly
inconsistent coefficient estimates
You'll address this issue in EDUC 645 with Poisson regression

Can also (potentially) be addressed with an inverse hyperbolic sine
transformation
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Regress Y on log(X)

"every doubling (or whatever base) of X
associated with  diff in Y"

Regress log(Y) on X

Every 1 unit diff in X associated with
 % diff in Y

Regress log(Y) on log(X)

Every 1% diff in X associated with  percent diff in Y

Y = β̂0 + β̂1log(X)

β̂1

log(Y ) = β̂0 + β̂1X

100(eβ̂1 − 1)

log(Y ) = β̂0 + β̂1log(X)

β̂1
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Quadratic terms: a special
kind of interaction
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Quadratic model

Effects of a predictor can differ by that predictor:

Can point upwards or downwards, but all quadratic relationships are non-monotic; the
relationship both rises and falls (or falls and rises)

Y = β0 + β1X1 + β2(X1 ∗ X1) + ε

Y = β0 + β1X1 + β2X
2
1 + ε
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A quadratic relationship

Which direction will the quadratic line of best fit point?
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A quadratic relationship
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A quadratic relationship

We can represent quadratic fits mathematically in generic form: .
Challenge: what signs will each of the three coefficients take for the above relationship?

y = β0 + β1x + β2x
2
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Fitting the quadratic
summary(lm(read_score ~ total_spending + I(total_spending^2), pisa))

...
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -98.511 -15.722   3.806  22.651  59.394 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.728e+02  9.665e+00  38.574  < 2e-16 ***
## total_spending       1.750e-03  1.798e-04   9.732 4.22e-14 ***
## I(total_spending^2) -5.260e-09  6.498e-10  -8.096 2.70e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 31.34 on 62 degrees of freedom
## Multiple R-squared:  0.6117,    Adjusted R-squared:  0.5992 
## F-statistic: 48.84 on 2 and 62 DF,  p-value: 1.834e-13
...

Fitted equation: . How do our

model fit statistics compare to the linear version?

^read = 372.8 + 0.00175 ∗ spend − 0.00000000526 ∗ spend2
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A declining relationship between
spending and performance doesn't make
much substantive sense, so we would
probably not use a quadratic fit for our
full data
However, without Qatar and Luxembourg,
a quadratic describes the relationship
quite nicely

Don't extrapolate the shape of the
parabola to the left of the y-axis
Shouldn't assume the y values will be
higher to the left of the y-axis

The "right" fit to data
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Higher-order polynomials
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Strong cubic Our DIBELS data

Cubics
We needn't restrict ourselves to transformations to normality to only quadratic relationships. Many
relationships, for example are cubic (third-power) in nature. Particularly true when there are
measurement issues in the tails and/or floor/ceiling effects.

^W20_ORF = 2.81 + 1.47 ∗ F19_ORF − 0.0010 ∗ F19_ORF 2 − 0.000017 ∗ F19_ORF 3

56 / 64



There are an infinite number of potentially
effective transformations:

Squares, cubes, quartic, quintics, ...
Square roots, cube roots, fourth roots, ...
Logarithms (of any base), antilogarithms
Inverses
Trigonometric functions
Hyperbolic functions
Combinations of above...

Approaches to achieve local linearity:

Splines
Local estimated scatterplot smoothing
(LOESS)

Other approaches

Some emerging issues:
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Synthesis and wrap-up
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Empirical approach

Notice presence of non-linearity in
relationship
Find an ad-hoc transformation of either
the predictor, the outcome, or both that
renders the relationship linear
Use OLS in the transformed world, and
conduct inference there
De-transform fitted model to produce
sensible plots

Theory-driven approach

Use theory or knowledge from prior
research to postulate a non-linear model
Use non-linear regression (nls or other
estimation packages) (part of the
Generalized Linear Model family) to fit
the postulated trend in the real world
and conduct inference there
Interpret parameter estimates directly
We are not learning how to do this, but
worth exploring yourself

Different approaches
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Tukey's Ladder Tukey's Bulge

The Ladder and the Bulge

60 / 64



Putting non-linearity together
Remember to check your linearity assumption

Use bivariate scatter plots
Use residual and Q-Q plots to diagnose

Make sensible transformations
Logarithmic, inverse, root and other functions can allow a return to a world of linearity
and permit you to use the GLM tools of OLS to estimate non-linear relationships
Best to use transformations that are the most straightforward to interpret
Use Tukey's Bulge to guide what kind of transformation you will attempt
There is no one "right" transformation for a given data shape
Start with transforming x before y
Generally, do not use a "start" to log transform data that includes 0s
Inspect scatter plots post-transformation to check for success in linearizing

With large data, can be hard to see; consider binscatter options (by hand or
binsreg; more on this in our next unit)

Predictors can interact with themselves
Quadratic and cubic models provide a flexible strategy for fitting non-linear models,
especially those that cannot be linearized by logarithms
Be careful about overfitting and model instability with polynomials of order >3!
Quadratics and logs will often produce similar fitted lines; quadratic allows direct
statistical test for non-linearity, logarithm may fit with theory better and/or can be more
readily interpretable
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Goals of the unit
Describe in writing and verbally the assumptions we violate when we fit a non-linear
relationship with a linear model
Transform non-linear relationships into linear ones by using logarithmic scales
Estimate regression models using logarithmic scales and interpret the results
Estimate and interpret models with quadratic and higher-order polynomial terms
(special kinds of interactions)
Select between transformation options
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To-Dos
Reading:

By 3/6 class: McIntosh et al. (2021) and discussion questions

Assignment 4:
Due March 10, 12:01p

Final
Due March 20, 12:01p

Re- (late) submissions
Everything due March 14, 5:00p (no exceptions)
Assignments with scores <90% only
Earn up to 90%
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Log vs. quadratic
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