
Categorical predictors and
ANOVA/ANCOVA

EDUC 643: Unit 4

David D. Liebowitz
Processing math: 100%



Roadmap

2 / 98
Processing math: 100%



Unit goals
Describe the relationship between dichotomous and polychotomous variables and
convert variables between these forms, as necessary
Conduct a two-sample t-test
Describe the relationship between a two-sample t-test and regressing a continuous
outcome on a dichotomous predictor
Estimate a regression with one dummy variable as a predictor and interpret the
results (including when the reference category changes)
Estimate a multiple regression model with several continuous and dummy variables
and interpret the results
Estimate an ANOVA model and interpret the within- and between-group variance

Do the same for an ANCOVA model, adjusting for additional continuous
predictors

Describe the similarities and differences of Ordinary-Least Squares regression
analysis and ANOVA/ANCOVA, and when one would prefer one approach to another
Describe potential Type I error problems that arise from multiple group
comparisons and potential solutions to these problems, including theory, pre-
registration, ANOVA and post-hoc corrections
Describe the relationship between different modeling approaches with the General
Linear Model family
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Categorical variables
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Categorical variables
So far, we have only looked at General Linear Models (and their associated OLS
regression estimating equations) involving continuous predictors. But what about
categorical predictors?

What are categorical predictors?

Categorical predictors are predictors in statistical models whose values denote
categories. Of course, this begs the question...
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Nominal predictors

These have unordered values
E.g., gender, religion, political party

Ordinal predictors

These have ordered values
E.g., grade, developmental stage,
education level (?)

Categorical predictors
Important distinctions and conventions:

Another important distinction: dichotomies (only 2 categories) vs. polychotomies (>2
categories)
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Our (new!) motivating question

A team of researchers based at the University of Oregon aimed to understand the effects of the
COVID-19 pandemic on students' early literacy skills.1

Ann Swindells Professor in Special Education Gina Biancarosa, former UO doctoral students David
Fainstein, Chris Ives, and Dave Furjanic, along with CTL Research Manager Patrick Kennedy, used
data from assessments of 471,456 students across 1,684 schools on the Dynamic Indicators of
Basic Early Literacy Skills (DIBELS) to analyze the extent to which students' Oral Reading Fluency
(ORF) scores differed across four waves of DIBELS assessment prior-to and during the pandemic.

Their study is published in The Elementary School Journal.

[1] For various reasons, the pandemic is a "lousy natural experiment" for examining the effects of a particular policy response (e.g, virtual schooling).
However, it is quite possible to seek to understand its global effects via just the type of analysis Furjanic et al. conducted.
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Our data
str(dibels)

## 'data.frame':    5396 obs. of  18 variables:
##  $ sch_deid     : int  10001 10001 10001 10002 10002 10002 10003 10003 10003
##  $ grade        : int  1 2 3 1 2 3 1 2 3 1 ...
##  $ y1_boy_mean  : num  30.6 71.3 102.9 34.1 79.5 ...
##  $ y1_moy_mean  : num  51.8 105.7 132.6 62.3 118.1 ...
##  $ y2_boy_mean  : num  26 71.1 90.5 32.6 68.1 ...
##  $ y2_moy_mean  : num  46.5 97.8 111.2 50.9 98.6 ...
##  $ st           : chr  "AL" "AL" "AL" "AL" ...
##  $ school_magnet: chr  "No" "No" "No" "No" ...
##  $ school_titlei: chr  "Title I targeted assistance school" "Title I targete
##  $ tr_ts        : int  100 105 107 96 82 78 74 92 73 124 ...
##  $ school_enroll: int  312 312 312 256 256 256 239 239 239 418 ...
##  $ frpl_prop    : num  0.1423 0.0423 0.0423 0.1492 0.0492 ...
##  $ pre          : num  41.2 88.5 117.8 48.2 98.8 ...
##  $ post         : num  36.2 84.4 100.9 41.7 83.3 ...
##  $ asian_prop   : num  0.06 0.1238 0.0841 0.1042 0.061 ...
##  $ black_prop   : num  0.14 0.0857 0.1402 0.125 0.2439 ...
##  $ hisp_prop    : num  0.09 0.0571 0.0561 0.0938 0.061 ...
##  $ white_prop   : num  0.61 0.686 0.654 0.583 0.573 ...
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How similar is our data to Furjanic?

# How many unique schools are represented?
length(unique(dibels$sch_deid))

## [1] 1527

# How many total students contribute test-scores?
sum(dibels$tr_ts)

## [1] 396188
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Mean comparison
mean(dibels$pre)

## [1] 75.12461

mean(dibels$post)

## [1] 70.67498

Means are 4.5 words per-minute apart.
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Pre-pandemic Post-pandemic onset

Understanding the distributions
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Understanding the distributions

plot(density(dibels$pre), main=" ", sub=NULL, ylim=range(0,0.011))
lines(density(dibels$post), col="red")
legend(150, .008, legend=c("pre", "post"), fill=c("black", "red"))

But, as you may by now have anticipated, we are interested in knowing how likely we are to have
gotten such a difference by idiosyncrasy of sampling from a population of school-grades in which
there was no difference. Fortunately, we have just such a tool in our toolbox already. What will the

(asymptotic) distribution of means of repeatedly drawn samples from a given population be?
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Two-sample t-test
t.test(dibels$pre, dibels$post)

## 
##     Welch Two Sample t-test
## 
## data:  dibels$pre and dibels$post
## t = 6.4962, df = 10790, p-value = 8.602e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  3.106978 5.792286
## sample estimates:
## mean of x mean of y 
##  75.12461  70.67498

# I'm allowing in this t-test for the possibility that my sample in 
# each group is of different sizes and has different variance. 
# These assumptions affect the precision of my estimates. In some 
# settings, particularly experimental ones, I can impose stricter 
# assumptions and get more precise estimates.
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Our old friend
We can now answer a lingering question from last term, and avoid having to make some
torturous assumptions about what the "true" population mean is:

t.test(who$life_expectancy[who$status=="Developing"], 
       who$life_expectancy[who$status=="Developed"])

## 
##     Welch Two Sample t-test
## 
## data:  who$life_expectancy[who$status == "Developing"] and who$life_expectan
## t = -12.854, df = 103.88, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.78858  -9.36995
## sample estimates:
## mean of x mean of y 
##  69.70199  80.78125

# The square braces [] allow me to subset my data
# by the boolean operations within them

14 / 98
Processing math: 100%



Waves of data
Show 9  entries Search:

Showing 1 to 9 of 5,396 entries

Previous 1 2 3 4 5 … 600 Next

1 10001 1 30.6 51.8 41.2 36.2

2 10001 2 71.3 105.7 88.5 84.4

3 10001 3 102.9 132.6 117.8 100.9

4 10002 1 34.1 62.3 48.2 41.7

5 10002 2 79.5 118.1 98.8 83.3

6 10002 3 95.7 127.4 111.5 105.8

7 10003 1 39.4 61.0 50.2 36.5

8 10003 2 86.3 122.3 104.3 88.6

9 10003 3 103.9 134.4 119.2 116.3

sch_deid▴▾ grade▴▾ y1_boy_mean▴▾ y1_moy_mean▴▾ pre▴▾ post▴▾
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Waves of data

I actually have the same outcome stored across multiple variables. What is it? This is a
classic example of a phenomenon you will come to know and hate: the curse of wide
and long data structures.

Show 6  entries Search:

Showing 1 to 6 of 5,396 entries

Previous 1 2 3 4 5 … 900 Next

1 10001 1 30.6 51.8 41.2 36.2

2 10001 2 71.3 105.7 88.5 84.4

3 10001 3 102.9 132.6 117.8 100.9

4 10002 1 34.1 62.3 48.2 41.7

5 10002 2 79.5 118.1 98.8 83.3

6 10002 3 95.7 127.4 111.5 105.8

sch_deid▴▾ grade▴▾ y1_boy_mean▴▾ y1_moy_mean▴▾ pre▴▾ post▴▾
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Long to wide Wide to long

Wide and long data
Various types of analyses will necessitate different data structures:

Understanding exactly how to do this will take repeated time and practice, and you will
nearly always need to look up and remind yourself how to do it. Bookmark and familiarize
yourself with this vignette: https://tidyr.tidyverse.org/articles/pivot.html!

You don't need to be able to do this for assignments in this class, but I have the code for
how to do so at the end of the slides.
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Long DIBELS
Show 9  entries Search:

Showing 1 to 9 of 21,584 entries

Previous 1 2 3 4 5 … 2,399 Next

1 10001 1 y1_boy 30.6 41.2 36.2

2 10001 1 y1_moy 51.8 41.2 36.2

3 10001 1 y2_boy 26.0 41.2 36.2

4 10001 1 y2_moy 46.5 41.2 36.2

5 10001 2 y1_boy 71.3 88.5 84.4

6 10001 2 y1_moy 105.7 88.5 84.4

7 10001 2 y2_boy 71.1 88.5 84.4

8 10001 2 y2_moy 97.8 88.5 84.4

9 10001 3 y1_boy 102.9 117.8 100.9

sch_deid▴▾ grade▴▾ period ▴▾ mean_orf▴▾ pre▴▾ post▴▾
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Dummy coding
The mean values for pre-pandemic and post-pandemic onset are no longer helpful:

dibels_long <- select(dibels_long, -c(pre, post))

But it will be helpful for us to be able to designate which observations refer to a time
period before the pandemic, and which refer to a time period post-onset:

dibels_long <- mutate(dibels_long,
               post = ifelse(period=="y1_boy" | 
                             period=="y1_moy", 0, 1))
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Dummy variables
Dummy (or indicator variables) distinguish between categories, but offer no meaningful
quantitative information on their own.

By convention, the variable name corresponds to the category given by the value==1, e.g.:

post = 1 if after pandemic onset

post = 0 if pre-pandemic

The category given the value 0 is called the reference category.

Good data management practice: call the categorical variable the value implied by its
substantive meaning when equal to 1 (i.e., "post" rather than "pandemic"; "treat" rather
than "condition") so that you are clear on what 0 and 1 represent.
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Polychotomies
In fact, dummy coding will prove essential for categorical variables with more than two
categories as well, especially those that are nominal (i.e., unordered):

table(dibels_long$school_titlei)

## 
##                                                         Missing 
##                                                             752 
##                                            Not a Title I school 
##                                                            2752 
## Title I schoolwide eligible-Title I targeted assistance program 
##                                                            1124 
##                   Title I schoolwide eligible school-No program 
##                                                             120 
##                                       Title I schoolwide school 
##                                                           14712 
##          Title I targeted assistance eligible school-No program 
##                                                             284 
##                              Title I targeted assistance school 
##                                                            1840
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Polychotomies
Here we have seven different levels of a school's Title I status. We can probably simplify
these, but we need to be able to represent them using numerical values, when these
levels don't inherently have a numerical structure. So... we use dummy coding. First, let's
simplify the categories:

dibels_long <- dibels_long %>%
      mutate(title1 = case_when(school_titlei=="Missing" ~ "Missing",
                                school_titlei=="Not a Title I school" ~ 
                                school_titlei=="Title I schoolwide eligi
                                school_titlei=="Title I schoolwide eligi
                                school_titlei=="Title I schoolwide school
                                school_titlei=="Title I targeted assista
                                school_titlei=="Title I targeted assista
table(dibels_long$title1, exclude=NULL)

## 
##            Missing        Not Title I Title I schoolwide   Title I targeted 
##                752               2752              15956               2124
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Dummy coding
The most common process for representing categorical variables in regression is
dummy coding.

Dummy coding essentially creates a new (dummy-coded) variable for each level.

School Status D1 D2 D3

Not Title I 0 0 0

Title I schoolwide 1 0 0

Title I targeted 0 1 0

Missing 0 0 1

One group becomes the reference group (in this case "Not Title I").

The dummy-coded variables are then coded "1" for their corresponding level, and 0
for all other levels.
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Dummy coding
In a sample dataset, we could conceive of the dummy coding scheme like this:

School Title I status D1 (Schoolwide) D2 (Targeted) D3 (Missing)

10001 Not Title I 0 0 0

10002 Title I schoolwide 1 0 0

10003 Title I targeted 0 1 0

10004 Missing 0 0 1

10005 Title I schoolwide 1 0 0

Since "Not Title I" is our reference, we don't create a new column for it (it's implied by 0s
in all other groups).

Hence, for K categories in our original variable, we have K − 1 dummy-coded variables.
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Dummies in R
From our polychotomous categorical variable, we can hand-create dummies:

dibels_long <- dibels_long %>%
  mutate(title1_school = ifelse(title1=="Title I schoolwide", 1, 0)) %>%
  mutate(title1_target = ifelse(title1=="Title I targeted", 1, 0)) %>%
  mutate(title1_miss = ifelse(title1=="Missing", 1, 0))

But, R is actually really smart, so the most straightforward way is to turn our original
variable into a factor and then let R automatically convert it into a series of dummies
when we need them:

dibels_long$title1 <- factor(dibels_long$title1)
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Categorical predictors in
regression
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Categorical predictors in regression

In our standard multiple regression model, we have noted that we've made several
important assumptions about our outcome (Yi) and residuals (εi):

Yi = β0 + β1X1i + β2X2i + . . . + βkXki + εi

but, we haven't made any particular assumptions about the form of the Xs. In fact,
regression models can easily accommodate categorical variables (both dichotomous
and polychotomous)!
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Pre/post in regression
We can now estimate whether there was a difference in ORF scores pre- and post-
pandemic onset in regression:

fit1 <- lm(mean_orf ~ post, data=dibels_long)
summary(fit1)

## 
## Call:
## lm(formula = mean_orf ~ post, data = dibels_long)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -74.306 -33.112   1.504  28.995 133.325 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  75.1246     0.3665 204.958   <2e-16 ***
## post         -4.4496     0.5184  -8.584   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 38.08 on 21582 degrees of freedom
## Multiple R squared: 0 003403 Adjusted R squared: 0 003356
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Pre/post in regression
## 
## Call:
## lm(formula = mean_orf ~ post, data = dibels_long)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -74.306 -33.112   1.504  28.995 133.325 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  75.1246     0.3665 204.958   <2e-16 ***
## post         -4.4496     0.5184  -8.584   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 38.08 on 21582 degrees of freedom
## Multiple R-squared:  0.003403,    Adjusted R-squared:  0.003356 
## F-statistic: 73.69 on 1 and 21582 DF,  p-value: < 2.2e-16

Our point estimate is identical to our original two-sample t-test, though our inference
has changed slightly.
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Regression w. categorical predictors
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Regression w. categorical predictors

y-intercept: estimated value of Y when dichotomous predictor=0

slope: estimated difference in Y between categories of predictor
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Reference category
What happens if we change the reference category?

# Create a new dummy variable called "pre", coded
# as one if test is prior to pandemic onset
dibels_long <- mutate(dibels_long,
               pre = ifelse(period=="y1_boy" | 
                             period=="y1_moy", 1, 0))

# Fit the model
fit2 <- lm(mean_orf ~ pre, data=dibels_long)
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Reference category
What happens if we change the reference category?

...
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  70.6750     0.3665 192.819   <2e-16 ***
## pre           4.4496     0.5184   8.584   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 38.08 on 21582 degrees of freedom
## Multiple R-squared:  0.003403,    Adjusted R-squared:  0.003356 
## F-statistic: 73.69 on 1 and 21582 DF,  p-value: < 2.2e-16
...

Sign of slope is reversed
Y-intercept is value of new reference category
SE and inference remain exact same
Full model statistics are the same
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What about the waves?
Up until now, we've focused on a simple comparison of pre- and post-pandemic onset
scores. But this glosses over the facts that:

Students typically improve substantially over the course of the year (we're lumping these
time points together)
We aren't able to capture the dynamic ways in which performance may have evolved over the
early parts of the pandemic

We can use our multiple wave collection (now captured in our categorical
polychotomous variable period) to address this.

table(dibels_long$period, exclude=NULL)

## 
## y1_boy y1_moy y2_boy y2_moy 
##   5396   5396   5396   5396
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Nominal predictors

These have unordered values
E.g., gender, religion, political party, state
of residence
NEVER include a nominal predictor
directly in a regression model

You end up with the problem of
"country-ness" as a predictor

Ordinal predictors

These have ordered values
E.g., grade, developmental stage,
education level (?)
CAN include an ordinal predictor directly
in regression, but make sure this is what
you want!

Should you convert a political view
scale (1=progressive, 2=liberal,
3=moderate, 4=conservative,
5=right-wing) to a series of
dummies?
What about education (1=HS
dropout, 2=HS grad, 3=some
college, 4=college grad)?

Categorical predictors
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Polychotomies in regression
In a regression model, categorical predictors are typically entered in their dummy-
coded format:

Y = β0 + β1D1 + β2D2 + β3D3 + . . . + ε

In our four-wave ORF regression, we can think of the equation like this:1

MEAN_ORFj = β0 + β1Y1_MOYj + β2Y2_BOYj + β3Y2_MOYj + εj

where did Y1_BOY (year 1, beginning of year) go?

How should we interpret each of the coefficients?

How should we interpret the intercept?

[1] Following convention, I'm subscripting this equation with "j" because our data does not represent individual observations (which we typically
subscript with "i"), but mean values, aggregated at the school-grade level.
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Why does this work?

37 / 98
Processing math: 100%



Interpreting coefficients
...
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   62.3436     0.4921 126.701  < 2e-16 ***
periody1_moy  25.5620     0.6959  36.734  < 2e-16 ***
periody2_boy  -2.7914     0.6959  -4.011 6.06e-05 ***
periody2_moy  19.4541     0.6959  27.957  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 36.15 on 21580 degrees of freedom
...

On average, when measured in Fall 2019, grades in schools had a mean ORF score of 62.3
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Interpreting coefficients
...
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   62.3436     0.4921 126.701  < 2e-16 ***
periody1_moy  25.5620     0.6959  36.734  < 2e-16 ***
periody2_boy  -2.7914     0.6959  -4.011 6.06e-05 ***
periody2_moy  19.4541     0.6959  27.957  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 36.15 on 21580 degrees of freedom
...

On average, when measured in Fall 2019, grades in schools had a mean ORF score of 62.3

On average, when measured in Winter 2020, grades in schools had a mean ORF score of 87.9 (62.3 + 25.6)
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Interpreting coefficients
...
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   62.3436     0.4921 126.701  < 2e-16 ***
periody1_moy  25.5620     0.6959  36.734  < 2e-16 ***
periody2_boy  -2.7914     0.6959  -4.011 6.06e-05 ***
periody2_moy  19.4541     0.6959  27.957  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 36.15 on 21580 degrees of freedom
...

On average, when measured in Fall 2019, grades in schools had a mean ORF score of 62.3

On average, when measured in Winter 2020, grades in schools had a mean ORF score of 87.9 (62.3 + 25.6)

On average, when measured in Fall 2020, grades in schools had a mean ORF score of 59.6 (62.3 + (-2.8))
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Interpreting coefficients
...
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   62.3436     0.4921 126.701  < 2e-16 ***
periody1_moy  25.5620     0.6959  36.734  < 2e-16 ***
periody2_boy  -2.7914     0.6959  -4.011 6.06e-05 ***
periody2_moy  19.4541     0.6959  27.957  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 36.15 on 21580 degrees of freedom
...

On average, when measured in Fall 2019, grades in schools had a mean ORF score of 62.3

On average, when measured in Winter 2020, grades in schools had a mean ORF score of 87.9 (62.3 + 25.6)

On average, when measured in Fall 2020, grades in schools had a mean ORF score of 59.6 (62.3 + (-2.8))

On average, when measured in Winter 2021, grades in schools had a mean ORF score of 81.79 (62.3 + 19.5)
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Interpreting coefficient significance

Coefficient significance tests still test the null hypothesis βk = 0, but we are testing

against the reference group implicit in our intercept.

...
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   62.3436     0.4921 126.701  < 2e-16 ***
periody1_moy  25.5620     0.6959  36.734  < 2e-16 ***
periody2_boy  -2.7914     0.6959  -4.011 6.06e-05 ***
periody2_moy  19.4541     0.6959  27.957  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

...

Which DIBELS test wave differs significantly from our reference group: "Y1_BOY"?

So, this is just a comparison of means, or a series of independent-sample t-tests!
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Changing reference category
If we change the model's reference category with a polychotomous variable, we will change the
parameter estimates and associated tests. Each refers to the estimated mean difference for that
group and the reference category. There can be significant variation from one group (e.g., time
period) to another, but not all groups are different from each other.

# I can specify directly in my call which group to serve as reference
summary(lm(mean_orf ~ relevel(period, ref="y2_boy"), data=dibels_long))

...
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                            59.5522     0.4921 121.028  < 2e-16 *
## relevel(period, ref = "y2_boy")y1_boy   2.7914     0.6959   4.011 6.06e-05 *
## relevel(period, ref = "y2_boy")y1_moy  28.3534     0.6959  40.745  < 2e-16 *
## relevel(period, ref = "y2_boy")y2_moy  22.2455     0.6959  31.968  < 2e-16 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 36.15 on 21580 degrees of freedom
## Multiple R-squared:  0.1021,    Adjusted R-squared:  0.1019 
## F-statistic: 817.7 on 3 and 21580 DF,  p-value: < 2.2e-16
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Prediction with categorical variables

Using the coefficients from our output, we have the following fitted regression equation:

^
MEAN_ORFj = 62.3 + 25.6(Y1_MOYj) + ( − 2.8)(Y2_BOYj) + 19.6(Y2_MOYj)

What is the predicted ORF for school grades in the middle of the 2020-21 school year?

^
MEAN_ORFj = 62.3 + 25.6(0) + ( − 2.8)(0) + 19.6(1) = 62.3 + 19.6 = 81.9

For dummy coded variables, we just add the appropriate effects for the group we are
interested in, or omit them if they are in our reference group.
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So many tests
Reference group Y1_BOY Y1_MOY Y2_BOY Y2_MOY

Y1_BOY . 1 2 3

Y1_MOY . 4 5

Y2_BOY . 6

Y2_MOY .

DANGER: we're back in the land of multiple hypothesis testing, and we may be
inadvertently committing Type I error!
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Dangers of multiple hypothesis tests

If your goal is to find a "statistically significant" result, you will detect such a relationship 1
out of 20 times (on average).

Imagine rolling a die. What is the probability you roll a 1? 1/6 = 0.167

Now, roll it twice, what is the probability at least one of your rolls is a 1?
1 − (5/6 ∗ 5/6) = 0.306

If you conduct enough tests, you'll detect a relationship eventually.
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How many tests?

(n categories)(n categories − 1)
2

~ 80 counties, so 3160 tests

Multiple tests in the wild
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Bonferroni method
Take a given α-threshold and "split it"
across the entire family of tests.
Assuming α = 0.05:

For 2 tests, conduct each at 0.025 level;
For 3 tests, conduct each at 0.0167 level;
etc. ...

Use this new threshold to identify the critical
t-statistic given the number of degrees of
freedom. For the PISA example this would be
p=0.05/3160=0.000016

Other approaches exist! Bonferroni is an
extremely conservative one--beware!

As tests increase, so do critical t-values:

# tests # new α t-statistic (df = ∞)

1 0.0500 1.96

2 0.0250 2.24

3 0.0167 2.39

4 0.0125 2.50

5 0.0100 2.58

6 0.0083 2.64

10 0.0050 2.81

20 0.0025 3.02

50 0.0010 3.29

100 0.0005 3.48

One fix
Instead of using α = 0.05 for each individual test, use α = 0.05 for the family of tests when
we examine multiple contrasts to test a single hypothesis.
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Bonferroni correction in R
pairwise.t.test(dibels_long$mean_orf, dibels_long$period,
                p.adjust.method = "bonferroni")

## 
##     Pairwise comparisons using t tests with pooled SD 
## 
## data:  dibels_long$mean_orf and dibels_long$period 
## 
##        y1_boy  y1_moy  y2_boy 
## y1_moy < 2e-16 -       -      
## y2_boy 0.00036 < 2e-16 -      
## y2_moy < 2e-16 < 2e-16 < 2e-16
## 
## P value adjustment method: bonferroni

We can see that our inference has become slightly weaker for our Y1_BOY vs. Y2_BOY
comparison, though still smaller than most traditional thresholds. Note that the others
have become weaker too, but they were so small to begin with that we don't see this
change.
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Another potential solution
Is there another way we could conceive of the assessment data collection wave variable
that is not categorical?

dibels_long$time <- as.numeric(dibels_long$period)
summary(lm(mean_orf ~ time, dibels_long))

...
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  65.3975     0.6335  103.24   <2e-16 ***
## time          3.0009     0.2313   12.97   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 37.99 on 21582 degrees of freedom
## Multiple R-squared:  0.007738,    Adjusted R-squared:  0.007692 
## F-statistic: 168.3 on 1 and 21582 DF,  p-value: < 2.2e-16
...

But perhaps, there are more satisfying ways to address this challenge!
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ANOVA
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ANOVA
Analysis of variance (ANOVA) is a special case of the general linear model

The primary goal of ANOVA is a comparison of means across different groups

H0 : μ1 = μ2 = μ3. . . μK

Although regression frameworks are more the norm across most disciplines, the
ANOVA approach can be especially useful for:

Exploring and comparing the within- and between-group variation in the
outcome
Simultaneously testing the main effects of categorical variables (and avoiding
some of the problems of multiple hypothesis testing)
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Within and between

Can you describe the variability within- and between-test periods?

Check out the podcast Within & Between on quant methods and unpacking the hidden curriculum of academia hosted by Jessica Logan and Sara
Hart (takes a developmental science perspective).
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Within and between

Questions we might want to answer about group differences:

1. Are observed differences between groups "real"?
2. In what context can we place these differences to evaluate their magnitude?
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Within and between
Let's imagine a slightly simpler example. Imagine three different data sets with a four-level
categorical predictor and across each data set, the mean value of each category was the same.

How important are the differences in these group means across each dataset? Within-
group variation provides important context for evaluating magnitude of between-group
variation!
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Partitioning variance
In regression, we partition our total variance SStotal into our SSmodel and SSresidual :

SSmodel = Deviation of observed value from the predicted value (Yi − Ŷi)

SSresidual = Deviation of predicted value from the grand mean (Ŷ − Ȳi)

In ANOVA, we apply a similar but slightly different conceptual process.
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Partioning variance in ANOVA
In ANOVA, we separate variance into between-group and within-group variance:

SSwithin = Deviation of observed value from its group mean (Yik − Ȳk)

SSbetween = Deviation of group mean from the grand mean (Ȳk − Ȳ)

SStotal = SSwithin + SSbetween
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We can represent the residual variance
around the group means (here on just a
random selection of 20 observations from
each period). Just like the error term in our
regression model, it is all the remaining
variance our predictor (period) can't explain.

In addition to each individual observation's
deviation from its group mean, each group's
mean also deviates from the grand mean of
Oral Reading Fluency.

Visualized variance partition
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MSw =
SSw
dfw

dfw = N − G

MSb =
SSb
dfb

dfb = G − 1

ANOVA test statistic
When we conduct an ANOVA we are testing the significance of an F-statistic using the
following formula:

F =
MSbetween

MSwithin

The mean squares (MS) of between- and within-group variance is just the Sum of the
Squares (SS) for each group, divided by its degrees of freedom (df):

where w subscripts within, b subscripts between, N is the number of observations and G
the number of groups.
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ANOVA significance test

The null hypothesis of an ANOVA is about the ratio of between- to within-group
variance.

Essentially, when we state H0 : μ1 = μ2 = μ3. . . μK, we are asking if the mean square
variance of the group means around the grand mean is greater than the mean square
variance of observations around their group mean. If the between-group variance were
much larger than the within-group variance, then the F-statistic would exceed 1.

F =
MSbetween

MSwithin
=

4.3
1.5

= 2.87

If the between-group variance is equal to or smaller than the within-group variance,
then our F-statistic will be ≤  1.

F =
MSbetween

MSwithin
=

0.2
1.5

= 0.13
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Calculating the F-statistic
Let's find our F-statistic for our period variable.

Within-Group (Residual) Variance MSWithin

# total n - number of groups (4)
nrow(dibels_long)

## [1] 21584

df_within <- 21584 - 4

sum((dibels_long$mean_orf - dibels_long$group_mean)^2) / df_within

## [1] 1306.462
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Calculating the F-statistic
Let's find our F-statistic for our period variable.

Between-Group Variance MSBetween

# number of groups (4) - 1
df_btw <- 4-1

sum((mean(dibels_long$mean_orf) - dibels_long$group_mean)^2) / df_btw

## [1] 1068298
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Calculating the F-statistic
MSBetween = 1, 068, 298

MSWithin = 1, 306

F =
MSBetween

MSWithin
=

1, 068, 298
1306

= 817.99

Our F-statistic is 818. Now that we see how it is calculated, let's fit an ANOVA in R to
review the output and make an inference (note that we could now also consult an F-
statistic lookup table to get the same info!).
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ANOVA in R
Because ANOVA is just a particular method of analyzing variance in GLMs, we can wrap
the anova command around our lm model fit.

fit3 <- lm(mean_orf ~ period, dibels_long)

anova(fit3)

## Analysis of Variance Table
## 
## Response: mean_orf
##              Df   Sum Sq Mean Sq F value    Pr(>F)    
## period        3  3204894 1068298   817.7 < 2.2e-16 ***
## Residuals 21580 28193461    1306                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can see all the information we calculated earlier. With a p-value < 2.2 × 10 − 16, our F-statistic
is highly unlikely to be a product of a population in which the population means across the four
waves of ORF administration were equal. Therefore we reject the null hypothesis and conclude
that, on average in the population, the mean ORF scores differed significantly across the waves of
assessment administration.
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Variance decomposition
In addition to using ANOVA to "batch test" group differences, as we've
seen it can be a useful tool to decompose the variance of your
outcome into between and within group variation
We can, in fact, extend this analysis to understand how much of the
variation in an individual's outcome occurs across different groups.
For example:

What proportion of the variation in child outcomes occurs within
classrooms, compared to schools, compared to neighborhoods?
Are differences in school funding greater between schools,
between districts or between states?

You can explore more about these topics in our HLM sequence (EDLD
628/629)
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ANOVA vs. regression
Both are implementations of the General Linear Model
A regression with dummy indicator variables is statistically identical to ANOVA
The F-test in a regression model represents a test of the model's variance against
the residual
In ANOVA, we can have one or more F-tests where we "batch test" a group of
coefficients

This can help avoid Type I errors (rejecting the null when it is in fact true)
ANOVA doesn't tell you anything about the magnitude of the difference...which
seems important?

Learning regression is the more general approach, of which ANOVA is a special
implementation; by learning regression you have a more flexible tool kit
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Presenting our results
modelsummary(list(fit1, fit3),
            stars=T,
            vcov = "robust",
            gof_omit = "Adj.|AIC|BIC|Log|RMSE|RSE|Std.Err",
            coef_rename = c("post" = "Post-Pandemic Onset", 
                            "periody1_moy" = "Winter 2020",
                            "periody2_boy" = "Fall 2020",
                            "periody2_moy" = "Winter 2021"))
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Table 1. Estimates of grade-level average Oral Reading Fluency (ORF) score across waves
of DIBELS administration, 2019-2021

 (1)   (2)

(Intercept) 75.125*** 62.344***

(0.369) (0.449)

Post-Pandemic Onset -4.450***

(0.518)

Winter 2020 25.562***

(0.696)

Fall 2020 -2.791***

(0.631)

Winter 2021 19.454***

(0.700)

Num.Obs. 21584 21584

R2 0.003 0.102

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Cells report coefficients and heteroscedastic-robust standard errors in parentheses.
Each observation is a school-grade-test value.
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Visualizing results
coef_plot <- modelplot(fit3,
               coef_rename = c("(Intercept)" = "Fall 2019 (Intercept)", 
                                "periody1_moy" = "Winter 2020",
                                "periody2_boy" = "Fall 2020",
                                "periody2_moy" = "Winter 2021"),
               vcov = "robust") +
               coord_flip() +
               theme_minimal(base_size = 16)
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Visualizing results
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Multiple regression with
categorical variables
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Mawwrr predictors
Now that we've learned the basic concept of multiple regression, it's a fairly simple task
to add additional covariates (either continuous or categorical) to our equation.

What theoretically justified covariates might be sensible to include? How would we make
such a determination?

Preliminarily, let's look at two: GRADE and SCHOOL_ENROLL:

MEAN_ORFj = β0 + β1Y1_MOYj + β2Y2_BOYj + β3Y2_MOYj +

β4GRADEj + β5SCHOOL_ENROLLj + . . . + εj
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Mawwrr predictors
MEAN_ORFj = β0 + β1Y1_MOYj + β2Y2_BOYj + β3Y2_MOYj +

β4GRADEj + β5SCHOOL_ENROLLj + . . . + εj

Before fitting any models, can we interpret what each of these coefficients will now
represent?

To what do I need to attend when specifying the predictorGRADE in my model?
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MR with categoricals
fit4<-lm(mean_orf ~ period + as.factor(grade) + 
                    school_enroll, data=dibels_long)
summary(fit4)

...
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       16.0746471  0.3715338  43.266  < 2e-16 ***
## periody1_moy      25.5620256  0.3324093  76.899  < 2e-16 ***
## periody2_boy      -2.7913676  0.3324093  -8.397  < 2e-16 ***
## periody2_moy      19.4541290  0.3324093  58.525  < 2e-16 ***
## as.factor(grade)2 38.9543683  0.3267633 119.213  < 2e-16 ***
## as.factor(grade)3 60.2924720  0.3572314 168.777  < 2e-16 ***
## as.factor(grade)4 81.9691911  0.3804983 215.426  < 2e-16 ***
## as.factor(grade)5 82.7431382  0.3913853 211.411  < 2e-16 ***
## school_enroll      0.0025891  0.0007059   3.668 0.000245 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.27 on 21575 degrees of freedom
## Multiple R-squared:  0.7952,    Adjusted R-squared:  0.7951 
## F statistic: 1 047e+04 on 8 and 21575 DF p value: < 2 2e 16
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## 
## Call:
## lm(formula = mean_orf ~ period + as.factor(grade) + school_enroll, 
##     data = dibels_long)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -98.509 -10.805  -0.484  10.386  86.013 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       16.0746471  0.3715338  43.266  < 2e-16 ***
## periody1_moy      25.5620256  0.3324093  76.899  < 2e-16 ***
## periody2_boy      -2.7913676  0.3324093  -8.397  < 2e-16 ***
## periody2_moy      19.4541290  0.3324093  58.525  < 2e-16 ***
## as.factor(grade)2 38.9543683  0.3267633 119.213  < 2e-16 ***
## as.factor(grade)3 60.2924720  0.3572314 168.777  < 2e-16 ***
## as.factor(grade)4 81.9691911  0.3804983 215.426  < 2e-16 ***
## as.factor(grade)5 82.7431382  0.3913853 211.411  < 2e-16 ***
## school_enroll      0.0025891  0.0007059   3.668 0.000245 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.27 on 21575 degrees of freedom
## Multiple R-squared:  0.7952,    Adjusted R-squared:  0.7951 
## F-statistic: 1.047e+04 on 8 and 21575 DF,  p-value: < 2.2e-16 75 / 98
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Show what you know
Use the adjusted means to show your findings when your question predictor is
categorical. Set all predictors to their sample means or to the value of the category and
then compute the predicted value of your outcome at each level of your categorical
question predictor:

mean(dibels_long$school_enroll)

## [1] 336.9754

prop.table(table(dibels_long$grade))

## 
##         1         2         3         4         5 
## 0.2657524 0.2524092 0.1864344 0.1540030 0.1414010

76 / 98
Processing math: 100%



Show what you know
Use the adjusted means to show your findings when your question predictor is
categorical. Set all predictors to their sample means or to the value of the category and
then compute the predicted value of your outcome at each level of your categorical
question predictor:

For Y1_MOY:

^
MEAN_ORFj = 16.06 + 25.56(1) + ( − 2.79)(0) + 19.45(0) + 38.95(0.25) + 60.29(0.19) + 81.96(0.15) + 82.74

For Y2_BOY:

^
MEAN_ORFj = 16.06 + 25.56(0) + ( − 2.79)(1) + 19.45(0) + 38.95(0.25) + 60.29(0.19) + 81.96(0.15) + 82.74

For Y2_MOY:

^
MEAN_ORFj = 16.06 + 25.56(0) + ( − 2.79)(0) + 19.45(1) + 38.95(0.25) + 60.29(0.19) + 81.96(0.15) + 82.74

For Y1_BOY:

^
MEAN ORF = 16 06 + 25 56(0) + ( − 2 79)(0) + 19 45(0) + 38 95(0 25) + 60 29(0 19) + 81 96(0 15) + 82 74

77 / 98
Processing math: 100%



Present in simple tabular format

Table 1.

Mean Oral Reading Fluency score across different administrations of the DIBELS 8

Wave Unadjusted Adjusted

Fall 2019 62.3 62.1

Winter 2020 87.9 87.7

Fall 2020 59.6 62.1

Winter 2021 81.8 81.6

*Adjusted mean = adjusting for grade and school size.
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An aside
If our question predictor were continuous, and we wanted to adjust for a categorical,
how might we do so? With just one other predictor?
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An aside
If our question predictor were continuous, and we wanted to adjust for a categorical,
how might we do so? With just one other predictor?

What multiple regression assumption is being relaxed here?
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An aside
If our question predictor were continuous, and we wanted to adjust for a categorical,
how might we do so? With multiple predictors?

df3 <- margins::margins(fit4,
            at = list(period=c("y1_boy", "y1_moy", 
                               "y2_boy", "y2_moy")))

# Use prototypical values in resulting dataset to show results
proto <-ggplot(data=df3, aes(x=school_enroll, y=fitted,color=period)) + 
   geom_smooth(method='lm') +
   xlab("School Enrollment") + ylab("Predicted ORF") +
   scale_color_discrete(name = "Period",
                       breaks=c("y1_boy", "y1_moy", 
                               "y2_boy", "y2_moy"),
                       labels=c("Fall 2019","Winter 2020",
                                "Fall 2020", "Winter 2021")) +
   theme_minimal(base_size=16)

81 / 98
Processing math: 100%



An aside
If our question predictor were continuous, and we wanted to adjust for a categorical,
how might we do so? With multiple predictors?
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Alongside previous results
modelsummary(list(fit3, fit4),
            stars=T,
            escape=F,
            vcov = "robust",
            gof_omit = "Adj.|AIC|BIC|Log|RMSE|RSE|Std.Err",
            coef_rename = c("periody1_moy" = "Winter 2020",
                            "periody2_boy" = "Fall 2020",
                            "periody2_moy" = "Winter 2021",
                            "as.factor(grade)2" = "2nd Grade",
                            "as.factor(grade)3" = "3rd Grade",
                            "as.factor(grade)4" = "4th Grade",
                            "as.factor(grade)5" = "5th Grade",
                            "school_enroll" = "School Enrollment (#)"))
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Alongside previous results
 (1)   (2)

(Intercept) 62.344*** 16.075***

(0.449) (0.326)

Winter 2020 25.562*** 25.562***

(0.696) (0.332)

Fall 2020 -2.791*** -2.791***

(0.631) (0.311)

Winter 2021 19.454*** 19.454***

(0.700) (0.330)

2nd Grade 38.954***

(0.297)

3rd Grade 60.292***

(0.345)

4th Grade 81.969***

(0.406) 84 / 98
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Alternative format
 (1)   (2)

(Intercept) 62.344*** 16.075***

(0.449) (0.326)

Winter 2020 25.562*** 25.562***

(0.696) (0.332)

Fall 2020 -2.791*** -2.791***

(0.631) (0.311)

Winter 2021 19.454*** 19.454***

(0.700) (0.330)

Covariates? No Yes

Num.Obs. 21584 21584

R2 0.102 0.795

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Cells report coefficients and heteroscedastic-robust standard errors in parentheses.
Each observation is a school-grade-test value. Covariates include grade-level and total
school enrollment. 85 / 98
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Putting into words
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ANCOVA
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ANCOVA
Analysis of covariance (ANCOVA) is an extension of ANOVA and multiple regression
It is also a part of the broader family of General Linear Models
The model relates categorical predictors to a continuous outcome, adjusting for the
effects of other covariates

Note: you may see in some (older) sources the statement that ANCOVA models
can only adjust for the effects of other continuous covariates. This is not true
as long as you are careful to specify your categorical covariates as dummy
indicators

The null hypothesis is still the same as ANOVA (μ1 = μ2 = μK).
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ANCOVA results
We can examine whether there are differences in the ORF scores by when students sat
for the test, while adjusting for students' grade level and their school's size

anova(fit4)

## Analysis of Variance Table
## 
## Response: mean_orf
##                     Df   Sum Sq Mean Sq   F value    Pr(>F)    
## period               3  3204894 1068298  3583.474 < 2.2e-16 ***
## as.factor(grade)     4 21757555 5439389 18245.759 < 2.2e-16 ***
## school_enroll        1     4010    4010    13.452 0.0002453 ***
## Residuals        21575  6431895     298                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As before, we reject the null and conclude that there is a difference, on average in
the population, between waves of the ORF administration, adjusting for the effects
of students' grade and school size
However, our F-statistic is now MUCH bigger
We've dramatically shrunk the RSS (28,193,461 vs. 6,431,752)
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ANOVA v. ANCOVA
Let's contrast an ANOVA with an ANCOVA test:

anova(fit3, fit4)

## Analysis of Variance Table
## 
## Model 1: mean_orf ~ period
## Model 2: mean_orf ~ period + as.factor(grade) + school_enroll
##   Res.Df      RSS Df Sum of Sq     F    Pr(>F)    
## 1  21580 28193461                                 
## 2  21575  6431895  5  21761565 14599 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In our basic ANOVA, our residual SS was 28,193,461 (it still is now). Now we see the
residual SS for our ANCOVA fit is 6,431,752, or meaningfully (and statistically
significantly) smaller
Our variance has been "reorganized" with the addition of school_enroll.
We can compare the two model fits with a new F-statistic that assesses whether
one explains more of the variance ("is a better fit") than the other...it is.
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ANCOVA v. MR
We can also compare our ANCOVA output to our regression output and see our
dummy-coded, "unbatched" analysis:

...
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       16.0746471  0.3715338  43.266  < 2e-16 ***
## periody1_moy      25.5620256  0.3324093  76.899  < 2e-16 ***
## periody2_boy      -2.7913676  0.3324093  -8.397  < 2e-16 ***
## periody2_moy      19.4541290  0.3324093  58.525  < 2e-16 ***
## as.factor(grade)2 38.9543683  0.3267633 119.213  < 2e-16 ***
## as.factor(grade)3 60.2924720  0.3572314 168.777  < 2e-16 ***
## as.factor(grade)4 81.9691911  0.3804983 215.426  < 2e-16 ***
## as.factor(grade)5 82.7431382  0.3913853 211.411  < 2e-16 ***
## school_enroll      0.0025891  0.0007059   3.668 0.000245 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.27 on 21575 degrees of freedom
## Multiple R-squared:  0.7952,    Adjusted R-squared:  0.7951 
## F-statistic: 1.047e+04 on 8 and 21575 DF,  p-value: < 2.2e-16
...
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Common statistical tests are linear models
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https://lindeloev.github.io/tests-as-linear/


It was the GLM the whole time...
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Synthesis and wrap-up
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Putting categorical predictors together
1. Regression models can easily include dichotomous and polychotomous predictors

Can be used for either nominal or ordinal predictors with sensible planning
around dummy variables and the omitted reference category

2. All assumptions are about Y at particular values of X (or Xs)—no assumptions about
the distribution of the predictors

3. The same toolkit we’ve developed for continuous predictors can be used for
dichotomous and polychotomous predictors (including hypothesis tests,
correlations and plots)

4. Be aware that when you introduce many categorical predictors you are implicitly
engaging in multiple hypothesis testing

ANOVA/ANCOVA can help you address this, but be careful not to focus on just
interpreting p-values

5. ANOVA/ANCOVA are just special cases of multiple regression
Can be useful to avoid problems of multiple hypothesis testing and
understanding within- and between-variation
Can tell you little to nothing about the magnitude of group differences
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Goals for the unit
Describe the relationship between dichotomous and polychotomous variables and
convert variables between these forms, as necessary
Conduct a two-sample t-test
Describe the relationship between a two-sample t-test and regressing a continuous
outcome on a dichotomous predictor
Estimate a regression with one dummy variable as a predictor and interpret the
results (including when the reference category changes)
Estimate a multiple regression model with several continuous and dummy variables
and interpret the results
Estimate an ANOVA model and interpret the within- and between-group variance

Do the same for an ANCOVA model, adjusting for additional continuous
predictors

Describe the similarities and differences of Ordinary-Least Squares regression
analysis and ANOVA/ANCOVA, and when one would prefer one approach to another
Describe potential Type I error problems that arise from multiple group
comparisons and potential solutions to these problems, including theory, pre-
registration, ANOVA and post-hoc corrections
Describe the relationship between different modeling approaches with the General
Linear Model family
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To-Dos
Reading:

Finish by Feb. 18: LSWR Chapter 14 and 16.6

Assignment 2:
Due Feb. 14, 11:59pm

Assignment 3:
Due Feb. 24, 11:59pm
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Pivot longer
dibels_long <- dibels %>% 
                  pivot_longer(
                    cols = c("y1_boy_mean", "y1_moy_mean", 
                             "y2_boy_mean", "y2_moy_mean"),
                    names_to = "period",
                    names_pattern = "(.*)_mean",
                    values_to = "mean_orf")
dibels_long$period <- factor(dibels_long$period)
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