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Goals of the unit
Describe relationships between quantitative data that are continuous
Visualize and substantively describe the relationship between two continuous
variables
Describe and interpret a fitted bivariate regression line
Describe and interpret components of a fitted bivariate linear regression model
Visualize and substantively interpret residuals resulting from a bivariate regression
model
Conduct a statistical inference test of the slope and intercept of a bivariate
regression model
Write R scripts to conduct these analyses
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Reminder of motivating question

We learned a lot about the distribution of life expectancy in countries, now we are
turning to thinking about relationships between life expectancy and other variables. In
particular:

Do individuals living in countries with more total years of attendance in school
experience, on average, higher life expectancy?

In other words, we are asking whether the variables SCHOOLING and LIFE_EXPECTANCY
are related.
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Materials
1. Life expectancy data (in file called life_expectancy.csv)
2. Codebook describing the contents of said data
3. R script to conduct the data analytic tasks of the unit (in file called

EDUC641_13_code.R)
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Our continuous relationship
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A reminder of our relationship
biv <- ggplot(data = who, aes(x = schooling, y = life_expectancy)) + 
        geom_point()
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The results of our linear fit
#> 
#> Call:
#> lm(formula = life_expectancy ~ schooling, data = who)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -16.3270  -2.6565   0.1581   3.3095  10.9758 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  42.8501     1.5976   26.82   <2e-16 ***
#> schooling     2.2348     0.1206   18.53   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 4.606 on 171 degrees of freedom
#> Multiple R-squared:  0.6676,    Adjusted R-squared:  0.6657 
#> F-statistic: 343.5 on 1 and 171 DF,  p-value: < 2.2e-16

These coefficients tell you where the fitted trend line should be drawn:

[Predicted value of LIFE_EXPECTANCY ] = (42.85) + 2.23 ∗ [Observed value of SCHOOLING]
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Fitted values
Can substitute values for the "predictor"  into the fitted equation to
compute the predicted values of .

Can do this for our old friend Chile ... and all others...

(SCHOOLING)

LIFE_EXPECTANCY
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Fitted values
So we can re-construct the line of best fit from the fitted values:
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Fitted values
Note that the fitted line always goes through the average of the predictors
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The regression equation
Each term in the regression equation has a specific interpretation

^LIFE_EXPECTANCY = 42.85 + 2.23 ∗ (SCHOOLING)
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The regression equation
Each term in the regression equation has a specific interpretation:

The predicted value of  is based on the OLS regression fit. Its
"hat" represents that it is a prediction.

^LIFE_EXPECTANCY = 42.85 + 2.23 ∗ (SCHOOLING)

^LIFE_EXPECTANCY
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The regression equation
Each term in the regression equation has a specific interpretation:

42.85 represents the estimated intercept. It tells you the predicted value of
 when  is zero (0)

In this context, it doesn't make sense to interpret this. Why?

^LIFE_EXPECTANCY = 42.85 + 2.23 ∗ (SCHOOLING)

LIFE_EXPECTANCY SCHOOLING
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The regression equation
Each term in the regression equation has a specific interpretation:

2.23 represents the estimated slope. It summarizes the relationship between
 and . It tells you the difference in the predicted

values of  per unit difference in .

Slopes can be positive (as in this case) or negative. Here, we conclude that countries
where children, on average, experience one additional year of schooling have an average
life expectancy of 2.23 more years.

We do NOT say that increasing the average years that children attend school by one
year increases average life expectancy in that country by 2.23 years. Why?

^LIFE_EXPECTANCY = 42.85 + 2.23 ∗ (SCHOOLING)

LIFE_EXPECTANCY SCHOOLING

LIFE_EXPECTANCY SCHOOLING
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The regression equation
Each term in the regression equation has a specific interpretation:

 represents the actual values of the predictor .

^LIFE_EXPECTANCY = 42.85 + 2.23 ∗ (SCHOOLING)

SCHOOLING SCHOOLING
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Regression inference
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Regression inference
As with our categorical and single-variable continuous data analysis, we can ask whether
we might have observed a relationship between  and

 by an idiosyncratic accident of sampling.

Could we have gotten a slope value of 2.23 by sampling from a population in which there
was no relationship between  and ?

In other words, by sampling from a null population in which the slope of the
relationship between  and  was zero?

LIFE_EXPECTANCY

SCHOOLING

LIFE_EXPECTANCY SCHOOLING

LIFE_EXPECTANCY SCHOOLING
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Regression inference
What is the probability that we would have gotten a slope value of 2.23 (or a more
extreme value) by sampling from a population in which there was no relationship
between  and ?

...
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  42.8501     1.5976   26.82   <2e-16 ***
#> schooling     2.2348     0.1206   18.53   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 4.606 on 171 degrees of freedom
#> Multiple R-squared:  0.6676,    Adjusted R-squared:  0.6657 
#> F-statistic: 343.5 on 1 and 171 DF,  p-value: < 2.2e-16
...

As with our previous analysis, R provides us with a p-value which can help us to judge the
likelihood that our results are driven by idiosyncrasies of sampling.

LIFE_EXPECTANCY SCHOOLING
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Regression inference
...
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  42.8501     1.5976   26.82   <2e-16 ***
#> schooling     2.2348     0.1206   18.53   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 4.606 on 171 degrees of freedom
#> Multiple R-squared:  0.6676,    Adjusted R-squared:  0.6657 
#> F-statistic: 343.5 on 1 and 171 DF,  p-value: < 2.2e-16
...

Here, the p-value for the  regression slope is  (in fact, ).

With an alpha-threshold of 0.05,  is definitely less than 0.05. Thus, we reject the null
hypothesis that there is no relationship between  and

, on average in the population.

LIFE_EXPECTANCY
SCHOOLING

< 0.0001 < 2−16

2−16

LIFE_EXPECTANCY

SCHOOLING
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In our investigation of country-level aggregate
measures of schooling and life expectancy, we
have found that the average years of
schooling in a country is related to the
average life expectancy. In particular, when we
relate the country-level life expectancy
(LIFE_EXPECTANCY) to the country-level
mean years of schooling (SCHOOLING), we
find that the trend-line estimated by
ordinary-least-squares regression has a slope
of 2.23 (p<0.0001). This implies that two
countries that differ in their average years of
schooling attainment by 1 year will have, on
average, a difference in life expectancy of 2.23
years. Of course, this relationship is far from
causal...

Writing it up
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Reporting results
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Descriptive statistics
What do you want people to know about the nature of the variables in

your data?
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Things people should probably know:

Number of observations (N)
Mean of continuous variables
Measure of variance of continuous
variables (probably SD)
Count/proportion of values for
categorical variables

Things people might need to know:

Min/max values
Median value
IQR
Missing %

Descriptive statistics
What do you want people to know about the nature of the variables in

your data?

Things people (probably) don't need to know: number of unique values, summary stats on ID
variables, ?
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(Re)producing beautiful results
A descriptive table (Table 1):

library(modelsummary)
datasummary_skim(who1)

Unique Missing Pct. Mean SD Min Median Max

schooling 89 0 12.9 2.9 4.9 13.1 20.4

life_expectancy 35 0 71.7 8.0 51.0 74.0 88.0
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(Re)producing beautiful results
A descriptive table (Table 1):

names(who1) <- c("Region", "Status", "Schooling (Yrs)", 
                                  "Life Expectancy (Yrs)")
datasummary_skim(who1,
                 fun_numeric = list(Mean = Mean, SD = SD, Min = Min,
                                    Median = Median, Max = Max))

Mean SD Min Median Max

Schooling (Yrs) 12.9 2.9 4.9 13.1 20.4

Life Expectancy (Yrs) 71.7 8.0 51.0 74.0 88.0

26 / 53



(Re)producing beautiful results
A descriptive table (Table 1):
Saving it to a Word table:

datasummary_skim(who1, 
                 fun_numeric = list(Mean = Mean, SD = SD, Min = Min,
                                    Median = Median, Max = Max),
                 output = "table.docx")

Need to install.packages("pandoc") first
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(Re)producing beautiful results
A descriptive table (Table 1):
Numeric variables by a categorical variable

# Tell R to cut by a given variable
datasummary_balance(`Schooling (Yrs)`+ `Life Expectancy (Yrs)` ~ Status,
                    data = who1)

Developed (N=29) Developing (N=144)

Mean Std. Dev. Mean Std. Dev. Diff. in Means Std. Error

Schooling (Yrs) 16.5 1.6 12.2 2.5 -4.3 0.4

Life Expectancy (Yrs) 80.9 3.6 69.9 7.3 -11.0 0.9

Can you imagine when this might be an especially useful set of descriptive statistics to

produce?
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(Re)producing beautiful results
A descriptive table (Table 1):
Numeric variables by a categorical variable

datasummary_balance(`Schooling (Yrs)`+ `Life Expectancy (Yrs)` ~ Status,
                    dinm = F, # drop the diff-in-means
                    data = who1)

Developed (N=29) Developing (N=144)

Mean Std. Dev. Mean Std. Dev.

Schooling (Yrs) 16.5 1.6 12.2 2.5

Life Expectancy (Yrs) 80.9 3.6 69.9 7.3
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(Re)producing beautiful results
A regression output table (Table 2)

modelsummary(fit)

 (1)

(Intercept) 42.850

(1.598)

schooling 2.235

(0.121)

Num.Obs. 173

R2 0.668

R2 Adj. 0.666

AIC 1023.4

BIC 1032.8

Log.Lik. -508.687

RMSE 4.58 30 / 53



(Re)producing beautiful results
Based on what you know so far, what do people need to know about your

regression results?
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(Re)producing beautiful results
Based on what you know so far, what do people need to know about your

regression results?

People should know:

Estimate of the intercept and coefficient(s)
Uncertainty in estimates of the intercept and coefficient(s)
Number of observations

 (we'll learn about this later)

Convention in most outlets to provide asterisks denoting conventional alpha thresholds
(debatably helpful).

R2
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(Re)producing beautiful results
A regression output table (Table 2)

modelsummary(fit, stars=T,
             gof_omit = "Adj.|AIC|BIC|RMSE|Log",
             coef_rename = c("schooling" = "Yrs. Schooling"))

 (1)

(Intercept) 42.850***

(1.598)

Yrs. Schooling 2.235***

(0.121)

Num.Obs. 173

R2 0.668

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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(Re)producing beautiful results
A regression output table (Table 2)
Saving it to a Word table:

modelsummary(fit, 
             stars=T,
             gof_omit = "Adj.|AIC|BIC|RMSE|Log",
             coef_rename = c("schooling" = "Yrs. Schooling"),
             output = "table2.docx")
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A gentle introduction to
bivariate regression:

Residual analysis
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Residual analysis

Our fitted regression line contains the "predicted" values of LIFE_EXPECTANCY for each
value of SCHOOLING. But almost all of the "actual" values of LIFE_EXPECTANCY lie off the
actual line regression line.
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An example: Chile

Observed values for Chile: ; 
Predicted value of LIFE_EXPECTANCY for Chile:

LIFE_EXPECTANCY = 85 SCHOOLING = 16.3

^LIFE_EXPECTANCY = 42.85 + 2.23 ∗ (16.3)

= 79.20
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An example: Chile

Actual life expectancy = 85

What can we say about the country of Chile's average life expectancy, relative to our
prediction?

^LIFE_EXPECTANCY = 79.20
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Now Egypt

Observed values for Egypt: ; 

Can you calculate the predicted value of LIFE_EXPECTANCY for Egypt and compare it to
the observed?

LIFE_EXPECTANCY = 79 SCHOOLING = 13.1
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What is a "residual"?
The difference ("vertical distance") between the observed value of the outcome its
predicted value is called the residual.

Residuals can be substantively and statistically useful:

Represent individual deviations from average trend
Tell us about values of the outcome after taking into account ("adjusting for") the
predictor

In this case, tell us whether countries have better or worse life expectancies,
given their average years of schooling
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Residual analysis
fit <- lm(life_expectancy ~ schooling, data=who)

# predict asks for the predicted values
who$predict <- predict(fit)

# resid asks for the raw residual
who$resid <- residuals(fit)

We can now treat these residual and predicted values as new variables in our dataset
and examine using all the other univariate and multivariate analysis tools we have.
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Examining the residuals
summary(who$resid)

#>     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
#> -16.3270  -2.6565   0.1581   0.0000   3.3095  10.9758

Sample mean of the residuals is always exactly zero
We've done a very poor job of predicting life expectancy for some countries

sd(who$resid)

#> [1] 4.592143

Standard deviation of the raw residuals can be quite useful in examining the quality
of our fit. How?
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Residual assumptions
For the p-values that we computed in the regression analysis to be correct, the
residuals must be normally distributed

boxplot(resid(fit))

A few outliers, but we seem to be doing ok...
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Residual assumptions
For the p-values that we computed in the regression analysis to be correct, the
residuals must be normally distributed1

Pretty good, pretty good... Understanding check: can you write out the code to create
the above figure?

[1] We have solutions if they are not which we will learn about in EDUC 643.
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Residual vs. fitted plot
For the p-values that we computed in the regression analysis to be correct, the
residuals must be normally distributed

Key assumption checks for normality:

The residuals "bounce randomly" around the 0 line.
The residuals could be roughly contained within a rectangle around the 0 line.
No one residual "stands out" from the basic random pattern of residuals.
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Residual vs. fitted plot
For the p-values that we computed in the regression analysis to be correct, the
residuals must be normally distributed

Key assumption checks for normality:

The residuals "bounce randomly" around the 0 line.
The residuals could be roughly contained within a rectangle around the 0 line.
No one residual "stands out" from the basic random pattern of residuals.
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Implementing residual v. fitted
ggplot(who, aes(x = predict, y = resid)) + 
         geom_point() +
  geom_hline(yintercept = 0, color = "red", linetype="dashed") +
  ylab("Residuals") + xlab("Fitted values") +
  scale_y_continuous(limits=c(-20, 20)) +
  theme_minimal(base_size = 16)
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Writing it up
In our investigation of country-level measures of schooling and life expectancy, we
found that the average years of schooling in a country is related to the average life
expectancy. As we show in Table 2, when we relate the country-level life expectancy
to the country-level mean years of schooling, we find that the trend-line estimated
by ordinary-least-squares regression has a slope of 2.23 (p<0.0001). This suggests
that two countries that differ in their average years of schooling attainment by 1 year
will have, on average, a difference in life expectancy of 2.23 years.

Table 2. Estimates of relationship between
life expectancy and schooling

&nbsp;(1)

(Intercept) 42.850***

(1.598)

Yrs. Schooling 2.235***

(0.121)

Num.Obs. 173

R2 0.668

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 48 / 53



Writing it up II
An analysis of the residuals from our fitted model suggests that our regression
assumptions are reasonably well met and we have appropriately characterized the
relationship between schooling and life expectancy. Despite the presence of a few
outliers, our residuals are roughly symmetrically distributed around 0. As we note in
Appendix Figure A1, our fitted regression does seem to underpredict life expectancy
for very low levels of schooling.
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Key takeaways
Start with a RQ which you can answer in your data
Understand your data first

Summarize and visualize each variable independently
Start with a visual representation of the relationship between your variables
How you display the relationship will influence your perception of the
relationship, but will not change the relationship
Try to describe what a particular observation in your visualized data represents

The regression model represents your hypothesis about the population
When you fit a regression model, you are estimating sample values of
population parameters that you will not directly observe
The goal of classical regression inference (just as with categorical relationships)
is to understand how likely the observed data in your sample are in the
presence of no relationship in the unobserved population

The regression model has a "smooth" and a "rough" component to it
The "smooth" part is the portion of the relationship that your model explains
The "rough" part is the extent to which each observation (and the observations
in aggregate) vary from the "smooth" part of your predictions
The "rough" parts (the residuals) provide important information on the extent to
which our models satisfy their assumptions

More on all of this in EDUC 643
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Synthesis and wrap-up
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Goals of the unit
Describe relationships between quantitative data that are continuous
Visualize and substantively describe the relationship between two continuous
variables
Describe and interpret a fitted bivariate regression line
Describe and interpret components of a fitted bivariate linear regression model
Visualize and substantively interpret residuals resulting from a bivariate regression
model
Conduct a statistical inference test of the slope and intercept of a bivariate
regression model
Write R scripts to conduct these analyses
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To Dos
Reading

LSWR Chapter 15.1 and 15.2: bivariate regression by Nov. 21

Assignments
Quiz #5 due November 27 at 5pm
Assignment #4 due December 2 at 11:59PM
Final assignment due December 11 at 4:59PM

No lab on 11/27 or 11/28! Lab replaces class on
11/26!
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