
Examining Relationships of
Continuous Variables

EDUC 641: Unit 4 Part 2

David D. Liebowitz



Roadmap

2 / 27



Goals of the unit
Describe relationships between quantitative data that are continuous
Visualize and substantively describe the relationship between two continuous
variables
Describe and interpret a fitted bivariate regression line
Describe and interpret components of a fitted bivariate linear regression model

Visualize and substantively interpret residuals resulting from a bivariate regression
model
Conduct a statistical inference test of the slope and intercept of a bivariate
regression model

Write R scripts to conduct these analyses
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Reminder of motivating question

We learned a lot about the distribution of life expectancy in countries, now we are
turning to thinking about relationships between life expectancy and other variables. In
particular:

Do individuals living in countries with more total years of attendance in school
experience, on average, higher life expectancy?

In other words, we are asking whether the variables SCHOOLING and LIFE_EXPECTANCY
are related.
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Materials
1. Life expectancy data (in file called life_expectancy.csv)
2. Codebook describing the contents of said data
3. R script to conduct the data analytic tasks of the unit (in file called

EDUC641_13_code.R)
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Our continuous relationship
(and some data-cleaning)
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Reading our data in
who <- read.csv(here("data/life_expectancy.csv")) %>%
  # first making variable names take a common format
  janitor::clean_names() %>% 
  # filtering to focus only on 2015
  filter(year == 2015) %>%
  # selecting only the variables we need
  select(country, status, schooling, life_expectancy) %>% 
  # renaming one of the variables that is really misnamed
  rename(region = country) %>% 
  # rounding life expectancy to nearest year
  mutate(life_expectancy = round(life_expectancy, digits = 0))
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First data cleaning step:
Identify missingness

sum(is.na(who$life_expectancy))

#> [1] 0

sum(is.na(who$schooling))

#> [1] 10

### For the really ambitious...
sapply(who, function(x) sum(is.na(x)))

#>          region          status       schooling life_expectancy 
#>               0               0              10               0

So some missingness...what do we do?
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Listwise vs. pairwise deletion
Listwise: any observations with any missingness (NA) for any of the variables to be
used in our analysis are dropped. Analysis only conducted on observations that
have complete data

Pairwise: observations with missingness for some of the variables to be used in
analysis are retained and included in sample when the particular analysis does rely
on that variable, but are necessarily excluded in analyses that rely on the variable
with missingness.

mean(who$life_expectancy, na.rm = T)

#> [1] 71.63934

mean(who$schooling, na.rm = T)

#> [1] 12.92717

How have we handled our missing data in estimating these univariate measures of
central tendency?
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Generally, we want to have a stable
analytic sample so that differences
across estimation strategies reflect
differences in our models rather than
sample differences
However, simply dropping these
observations may (severely) limit our
desired external generalizability
There are imputation methods that
you will explore in EDUC 645
With large data and a small amount
of missingness, it generally doesn't
matter what you do
For now, we're going to employ
listwise deletion

The chainsaw approach

who <- filter(who, !is.na(schooling))
nrow(who)

#> [1] 173
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A reminder of our relationship
biv <- ggplot(data = who, aes(x = schooling, y = life_expectancy)) + 
        geom_point()
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A gentle introduction to
bivariate regression:

Ordinary-Least Squares (OLS)-fitted
regression lines
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OLS-fitted regression line
biv + geom_smooth(method = lm, se = F)

The fitted regression line tells us the best prediction for the values of LIFE_EXPECTANCY.
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Some intuition

Can think of the OLS-fitted regression line as a stick held in place by thumbtacks and
elastic bands from each of the data points
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A visualization
Sums of Squares Visualization

Intercept:

0

Slope:

1

View Sums of Squares

Data Simulation
Mean of X:

5

Mean of Y:

5

Correlation

Normal View

View Residuals

View Sums of Squares

Sums of Squares = 10.59
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Pictures to equations
So, the Ordinary-Least Squares line of best fit minimizes the distance between it and all
observations in the point cloud. Critically helpful to us: this line of best fit provides a
two-number summary of the relationship between our two continuous variables.

As with any straight line, it can be characterized by a simple algebraic equation. Recall
the slope-intercept form of a linear equation from 7th grade:

What do each of these terms represent?

y = mx+ b
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Pictures to equations
HOWEVER, we don't represent lines of best fit with equations in slope-intercept form! Why not?

The slope-intercept form represents a deterministic relationship (y equals exactly mx+b). In
statistics, we use the line of best fit to approximate the relationship. The line is straight ("smooth"),
but there is a lot of variation ("roughness") around it, so we write this equation differently. We'll
learn the formal way to represent this relationship in 643. For now, we'll use this slope-intercept
form for convenience.

We can, in fact, calculate by hand the slope and the y-intercept of the line of best fit, using each
(x, y) pairing for each observation. However, as you can guess, this is much more straightforward to
do using a statistical software package. Turn the page to observe the wonders of our first
regression fit...!
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Fitting a regression in R
fit <- lm(life_expectancy ~ schooling, data=who)
summary(fit)

#> 
#> Call:
#> lm(formula = life_expectancy ~ schooling, data = who)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -16.3270  -2.6565   0.1581   3.3095  10.9758 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  42.8501     1.5976   26.82   <2e-16 ***
#> schooling     2.2348     0.1206   18.53   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 4.606 on 171 degrees of freedom
#> Multiple R-squared:  0.6676,    Adjusted R-squared:  0.6657 
#> F-statistic: 343.5 on 1 and 171 DF,  p-value: < 2.2e-16
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Interpreting the results
#> 
#> Call:
#> lm(formula = life_expectancy ~ schooling, data = who)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -16.3270  -2.6565   0.1581   3.3095  10.9758 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  42.8501     1.5976   26.82   <2e-16 ***
#> schooling     2.2348     0.1206   18.53   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 4.606 on 171 degrees of freedom
#> Multiple R-squared:  0.6676,    Adjusted R-squared:  0.6657 
#> F-statistic: 343.5 on 1 and 171 DF,  p-value: < 2.2e-16

These coefficients tell you where the fitted trend line should be drawn:

[Predicted value of LIFE_EXPECTANCY ] = (42.85) + 2.23 ∗ [Observed value of SCHOOLING]
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Fitted values
Can substitute values for the "predictor"  into the fitted equation to
compute the predicted values of .

Can do this for our old friend Chile ... and all others...

(SCHOOLING)
LIFE_EXPECTANCY
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Fitted values
So we can re-construct the line of best fit from the fitted values:

21 / 27



Fitted values
Note that the fitted line always goes through the average of the predictors

mean(who$schooling)

#> [1] 12.92717

mean(who$life_expectancy)

#> [1] 71.73988
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Fitted values
Note that the fitted line always goes through the average of the predictors
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Synthesis and wrap-up
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Goals of the unit
Describe relationships between quantitative data that are continuous
Visualize and substantively describe the relationship between two continuous
variables
Describe and interpret a fitted bivariate regression line
Describe and interpret components of a fitted bivariate linear regression model

Visualize and substantively interpret residuals resulting from a bivariate regression
model
Conduct a statistical inference test of the slope and intercept of a bivariate
regression model

Write R scripts to conduct these analyses
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To Dos
Reading

LSWR Chapter 15.1 and 15.2: bivariate regression by Nov. 21 class

Assignments
Assignment #4 due Dec. 2 at 11:59PM

Quizzes
Quiz #4 (now!) due 11/15 at 5pm
Quiz #5 (last one!!!) due 11/27 at 5pm
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Quiz
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